Question
Question: Which one of the following Boolean expressions is a tautology? \(\begin{aligned} & \text{A}\te...
Which one of the following Boolean expressions is a tautology?
A. (p∨q)∧(∼p∨∼q)B. (p∧q)∨(p∨∼q)C. (p∨q)∧(p∨∼q)D. (p∨q)∨(p∨∼q)
Solution
To solve this question we have to draw a truth table for all the expressions given in the options. The output values of all the possible combinations of the expression must be true for expression to be a tautology. So, the expression from the options gives the output values true is a tautology.
Complete step-by-step answer :
Before solving this question let us first understand the meaning of the symbols used in the question.
Here, symbol ∧ represents the AND operator, symbol ∨ represents the OR operator and symbol ∼ represents the NOT operator.
Now, let us draw the truth table for the option A i.e. (p∨q)∧(∼p∨∼q)
p | q | ∼p | ∼q | (p∨q) | (∼p∨∼q) | (p∨q)∧(∼p∨∼q) |
---|---|---|---|---|---|---|
True | True | False | False | True | False | False |
True | False | False | True | True | True | True |
False | True | True | False | True | True | True |
False | False | True | True | False | True | False |
Now, we will draw a truth table for option B, i.e. (p∧q)∨(p∨∼q)
p | q | ∼p | ∼q | (p∧q) | (p∨∼q) | (p∧q)∨(p∨∼q) |
---|---|---|---|---|---|---|
True | True | False | False | True | True | True |
True | False | False | True | False | True | True |
False | True | True | False | False | False | False |
False | False | True | True | False | True | True |
Now, we will draw a truth table for option C, i.e. (p∨q)∧(p∨∼q)
p | q | ∼p | ∼q | (p∨q) | (p∨∼q) | (p∨q)∧(p∨∼q) |
---|---|---|---|---|---|---|
True | True | False | False | True | True | True |
True | False | False | True | True | True | True |
False | True | True | False | True | False | False |
False | False | True | True | False | True | False |
Now, we will draw a truth table for option D, i.e. (p∨q)∨(p∨∼q)
p | q | ∼p | ∼q | (p∨q) | (p∨∼q) | (p∨q)∨(p∨∼q) |
---|---|---|---|---|---|---|
True | True | False | False | True | True | True |
True | False | False | True | True | True | True |
False | True | True | False | True | False | True |
False | False | True | True | False | True | True |
It is clear from the truth tables that only expression (p∨q)∨(p∨∼q) gives all True values in output, so (p∨q)∨(p∨∼q) is a tautology.
Hence, option D is the correct answer.
Note : Be careful while solving AND operator and OR operator because students get confused between the two symbols and make mistakes. It is necessary to check all options because sometimes a question has multiple correct options.