Solveeit Logo

Question

Mathematics Foundation Question on Differential Equations

Which one is the solution y(x) for the following ordinary differential equation and the specified boundary conditionmys?
d2ydx23dydx+2y=2ex;y(0)=2;(dydxx=0)=1\frac{d^2y}{dx^2} -3 \frac{dy}{dx}+2y = 2e ^{-x}; y(0) =2; (\frac{dy}{dx}_{x=0})=1

A

y(x)=13ex2ex13e2xy(x)= \frac{1}{3}e^{-x} -2e^x- \frac1{3}e^{2x}

B

y(x)=13ex+2ex13e2xy(x)= \frac{1}{3}e^{x} + 2e^x-\frac1{3}e^{2x}

C

y(x)=13ex+2ex13e2xy(x)= \frac{1}{3}e^{-x} + 2e^{-x}-\frac1{3}e^{2x}

D

y(x)=13ex+2ex13e2xy(x)= \frac{1}{3}e^{-x} + 2e^x-\frac1{3}e^{2x}

Answer

y(x)=13ex+2ex13e2xy(x)= \frac{1}{3}e^{-x} + 2e^x-\frac1{3}e^{2x}

Explanation

Solution

The correct answer is (C) : Inversion