Solveeit Logo

Question

Question: Which one is greater \({100^2}\) or \({2^{100}}\) ?...

Which one is greater 1002{100^2} or 2100{2^{100}} ?

Explanation

Solution

Hint- In this question, we use the concept of logarithm. We use the property of logarithm like logx(ab)=blogx(a){\log _x}\left( {{a^b}} \right) = b{\log _x}\left( a \right) and logx(x)=1{\log _x}\left( x \right) = 1 . In this question we use the base of log is 10 for better understanding and log10(2)=0.301{\log _{10}}\left( 2 \right) = 0.301 and log10(10)=1{\log _{10}}\left( {10} \right) = 1 .

Complete step-by-step answer:

Now, we have two numbers 1002{100^2} and 2100{2^{100}} . We have to find which one is greater 1002{100^2} or 2100{2^{100}} .
So, we use the concept of logarithm.
Let, p=1002p = {100^2}
Take a log on both sides and the base of the log is 10.
log10(p)=log10(1002)\Rightarrow {\log _{10}}\left( p \right) = {\log _{10}}\left( {{{100}^2}} \right)
We know, logx(ab)=blogx(a){\log _x}\left( {{a^b}} \right) = b{\log _x}\left( a \right)
log10(p)=2log10(100)\Rightarrow {\log _{10}}\left( p \right) = 2{\log _{10}}\left( {100} \right)
We can write as 100=102100 = {10^2}
log10(p)=2log10(102) log10(p)=4log10(10)  \Rightarrow {\log _{10}}\left( p \right) = 2{\log _{10}}\left( {{{10}^2}} \right) \\\ \Rightarrow {\log _{10}}\left( p \right) = 4{\log _{10}}\left( {10} \right) \\\
As we know, log10(10)=1{\log _{10}}\left( {10} \right) = 1
log10(p)=4×1 log10(p)=4  \Rightarrow {\log _{10}}\left( p \right) = 4 \times 1 \\\ \Rightarrow {\log _{10}}\left( p \right) = 4 \\\
We have to use this property, logx(a)=ba=xb{\log _x}\left( a \right) = b \Rightarrow a = {x^b}
p=104...............(1)\Rightarrow p = {10^4}...............\left( 1 \right)
Let, q=2100q = {2^{100}}
Take a log on both sides and the base of the log is 10.
log10(q)=log10(2100){\log _{10}}\left( q \right) = {\log _{10}}\left( {{2^{100}}} \right)
We know, logx(ab)=blogx(a){\log _x}\left( {{a^b}} \right) = b{\log _x}\left( a \right)
log10(q)=100log10(2)\Rightarrow {\log _{10}}\left( q \right) = 100{\log _{10}}\left( 2 \right)
We know the value of log10(2)=0.301{\log _{10}}\left( 2 \right) = 0.301
log10(q)=100×0.301 log10(q)=30.1  \Rightarrow {\log _{10}}\left( q \right) = 100 \times 0.301 \\\ \Rightarrow {\log _{10}}\left( q \right) = 30.1 \\\
We have to use this property, logx(a)=ba=xb{\log _x}\left( a \right) = b \Rightarrow a = {x^b}
q=1030.1..............(2)\Rightarrow q = {10^{30.1}}..............\left( 2 \right)
Now, we can easily compare (1) and (2) equations.
p<q 1002<2100  \Rightarrow p < q \\\ \Rightarrow {100^2} < {2^{100}} \\\
So, 2100{2^{100}} is greater than 1002{100^2} .

Note- We can use another method to solve the above question in an easy way. Let’s take an example, if we compare (2)2 and (3)3{\left( 2 \right)^2}{\text{ and }}{\left( 3 \right)^3} so we can easily identify (3)3{\left( 3 \right)^3} is greater because base and power of (3)3{\left( 3 \right)^3} is also greater than (2)2{\left( 2 \right)^2}.
Now, we take (2)100{\left( 2 \right)^{100}} and we can express it in form of (210)10{\left( {{2^{10}}} \right)^{10}}
As we know, 210=1024{2^{10}} = 1024
Now, (2)100=(1024)10{\left( 2 \right)^{100}} = {\left( {1024} \right)^{10}}
If we compare (1024)10 and (100)2{\left( {1024} \right)^{10}}{\text{ and }}{\left( {100} \right)^2} so we can easily identify (1024)10{\left( {1024} \right)^{10}} is greater than  (100)2{\text{ }}{\left( {100} \right)^2} because its base 1024 greater than 100 and also power 10 greater than 2. So, (2)100{\left( 2 \right)^{100}} is greater than  (100)2{\text{ }}{\left( {100} \right)^2} .