Solveeit Logo

Question

Mathematics Question on Relations and functions

Which of the following statements is/are true? Domain of f(x)=logax(x,a0)f\left(x\right)=log_{a} x \left(x, a \ge\,0\right) and a1a\ne1 is (0,)\left(0, \infty\right) and range of f(x)=R.f\left(x\right)=R. Range of f(x)=xx0f\left(x\right)=\sqrt{x} \forall\,x \,\ge0 is [0,).[0, \infty).

A

Only Statement-I

B

Only Statement-II

C

Both Statement-I and Statement-II

D

Neither Statement-I nor Statement-II

Answer

Both Statement-I and Statement-II

Explanation

Solution

f(x)=logax;x,a>0;a1f\left(x\right)=log_{a} x; x, a>0; a\ne1 or f(x)=logxlogaf\left(x\right)=\frac{log\,x}{log \,a} Domain of f(x)f\left(x\right) is (0,)\left(0, \infty\right) Range of f(x)f\left(x\right) is (,)\left(-\infty, \infty\right) or RR f(x)=x,x0f\left(x\right) =\sqrt{x}, x \ge0 Range of f(x)f\left(x\right) is [0,)[0, \infty)