Solveeit Logo

Question

Real Analysis Question on Sequences and Series

Which of the following statements is/are TRUE ?

A

n=1nlog(1+1n3)\sum\limits_{n=1}^{\infin}n\log(1+\frac{1}{n^3}) is convergent

B

n=1(1cos(1n))logn\sum\limits_{n=1}^{\infin}(1-\cos(\frac{1}{n}))\log n is convergent

C

n=1n2log(1+1n3)\sum\limits_{n=1}^{\infin}n^2 \log(1+\frac{1}{n^3}) is convergent

D

n=1(1cos(1n))logn\sum\limits_{n=1}^{\infin}(1-\cos(\frac{1}{\sqrt n}))\log n is convergent

Answer

n=1nlog(1+1n3)\sum\limits_{n=1}^{\infin}n\log(1+\frac{1}{n^3}) is convergent

Explanation

Solution

The correct option is (A) : n=1nlog(1+1n3)\sum\limits_{n=1}^{\infin}n\log(1+\frac{1}{n^3}) is convergent and (B) : n=1(1cos(1n))logn\sum\limits_{n=1}^{\infin}(1-\cos(\frac{1}{n}))\log n is convergent.