Solveeit Logo

Question

Physics Question on Motion in a plane

Which of the following relations is true for two unit vector A^\hat A and B^\hat B making an angle θ to each other?

A

A^+B^=A^B^ tanθ2|\hat A+\hat B| = |\hat A-\hat B|\ tan\frac {θ}{2}

B

A^B^=A^+B^ tanθ2|\hat A-\hat B| = |\hat A+\hat B|\ tan\frac {θ}{2}

C

A^+B^=A^B^ cosθ2|\hat A+\hat B| = |\hat A-\hat B|\ cos\frac {θ}{2}

D

A^B^=A^+B^ cosθ2|\hat A-\hat B| = |\hat A+\hat B|\ cos\frac {θ}{2}

Answer

A^B^=A^+B^ tanθ2|\hat A-\hat B| = |\hat A+\hat B|\ tan\frac {θ}{2}

Explanation

Solution

A^B^=2sin (θ2)|\hat A-\hat B| = 2sin\ (\frac θ2)
and
A^+B^=2cos (θ2)|\hat A+\hat B| = 2cos\ (\frac θ2)

A^B^A^+B^=tan(θ2)\frac {|\hat A-\hat B|}{|\hat A+\hat B|} = tan (\frac θ2)
⇒ |A^B^=A^+B^ tan(θ2)\hat A-\hat B| = |\hat A+\hat B|\ tan (\frac θ2)

So, the correct option is (B): A^B^=A^+B^ tan(θ2)\hat A-\hat B| = |\hat A+\hat B|\ tan (\frac θ2)