Solveeit Logo

Question

Question: Which of the following quantities are rational? Option A: \(\sin (\dfrac{{11\pi }}{{12}})\sin (\df...

Which of the following quantities are rational?
Option A: sin(11π12)sin(5π12)\sin (\dfrac{{11\pi }}{{12}})\sin (\dfrac{{5\pi }}{{12}})
Option B: sin4(π8)+cos4(π8){\sin ^4}(\dfrac{\pi }{8}) + {\cos ^4}(\dfrac{\pi }{8})
Option C: (1+cos(2π9))(1+cos(4π9))(1+cos(8π9))(1 + \cos (\dfrac{{2\pi }}{9}))(1 + \cos (\dfrac{{4\pi }}{9}))(1 + \cos (\dfrac{{8\pi }}{9}))

Explanation

Solution

By definition, rational number is a real number which is in the form pq\dfrac{p}{q} and q0q \ne 0 . Any number which follows the above criteria, is a rational number. To solve this question, we solve step by step every option and try to simplify the equation using trigonometric identities:
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
sin2(π8)+cos2(π8)=1{\sin ^2}(\dfrac{\pi }{8}) + {\cos ^2}(\dfrac{\pi }{8}) = 1
cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}
and few trigonometric ratios:
sin(π4)=12\sin (\dfrac{\pi }{4}) = \dfrac{1}{{\sqrt 2 }} and sin(π6)=12\sin (\dfrac{\pi }{6}) = \dfrac{1}{2}

Complete step-by-step answer:
Let’s start by solving every option.
Option A: sin(11π12)sin(5π12)\sin (\dfrac{{11\pi }}{{12}})\sin (\dfrac{{5\pi }}{{12}})
We know that:
sin(5π12)=cos(π12)\sin (\dfrac{{5\pi }}{{12}}) = \cos (\dfrac{\pi }{{12}}) because 5π12+π12=π2\dfrac{{5\pi }}{{12}} + \dfrac{\pi }{{12}} = \dfrac{\pi }{2}
sin(11π12)=sin(π12)\sin (\dfrac{{11\pi }}{{12}}) = \sin (\dfrac{\pi }{{12}}) because 11π12+π12=π\dfrac{{11\pi }}{{12}} + \dfrac{\pi }{{12}} = \pi
Substituting them in the given equation, we get:
sin(π12)cos(π12)=12sin(π6)\sin (\dfrac{\pi }{{12}})\cos (\dfrac{\pi }{{12}}) = \dfrac{1}{2}\sin (\dfrac{\pi }{6}) because sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
Using trigonometric ratios, we get: sin(π6)=12\sin (\dfrac{\pi }{6}) = \dfrac{1}{2}
After further simplification, we get: 12×12=14\dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{4}

Therefore, it is a rational number.

Option B: sin4(π8)+cos4(π8){\sin ^4}(\dfrac{\pi }{8}) + {\cos ^4}(\dfrac{\pi }{8})
We know that sin2(π8)+cos2(π8)=1{\sin ^2}(\dfrac{\pi }{8}) + {\cos ^2}(\dfrac{\pi }{8}) = 1
Squaring on both the sides, we get: [sin2(π8)+cos2(π8)]=sin4(π8)+cos4(π8)+2sin2(π8)cos2(π8)=1[{\sin ^2}(\dfrac{\pi }{8}) + {\cos ^2}(\dfrac{\pi }{8})] = {\sin ^4}(\dfrac{\pi }{8}) + {\cos ^4}(\dfrac{\pi }{8}) + 2{\sin ^2}(\dfrac{\pi }{8}){\cos ^2}(\dfrac{\pi }{8}) = 1
Further simplifying the equation, we get:
sin4(π8)+cos4(π8)=12sin2(π8)cos2(π8){\sin ^4}(\dfrac{\pi }{8}) + {\cos ^4}(\dfrac{\pi }{8}) = 1 - 2{\sin ^2}(\dfrac{\pi }{8}){\cos ^2}(\dfrac{\pi }{8})
We know that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
Therefore, sin(π8)=2sin(π8)cos(π8)\sin (\dfrac{\pi }{8}) = 2\sin (\dfrac{\pi }{8})\cos (\dfrac{\pi }{8})
Squaring on both the sides, we get: sin2(π8)=4sin2(π8)cos2(π8){\sin ^2}(\dfrac{\pi }{8}) = 4{\sin ^2}(\dfrac{\pi }{8}){\cos ^2}(\dfrac{\pi }{8})
Substituting it in our previous equation, we get: sin4(π8)+cos4(π8)=14sin2(π8)cos2(π8)=112sin2(π4){\sin ^4}(\dfrac{\pi }{8}) + {\cos ^4}(\dfrac{\pi }{8}) = 1 - 4{\sin ^2}(\dfrac{\pi }{8}){\cos ^2}(\dfrac{\pi }{8}) = 1 - \dfrac{1}{2}{\sin ^2}(\dfrac{\pi }{4})
By using trigonometric ratios, we get: sin(π4)=12\sin (\dfrac{\pi }{4}) = \dfrac{1}{{\sqrt 2 }}
Substituting the value, we get: sin4(π8)+cos4(π8)=112sin2(π4)=112(12)2=114=34{\sin ^4}(\dfrac{\pi }{8}) + {\cos ^4}(\dfrac{\pi }{8}) = 1 - \dfrac{1}{2}{\sin ^2}(\dfrac{\pi }{4}) = 1 - \dfrac{1}{2}{(\dfrac{1}{{\sqrt 2 }})^2} = 1 - \dfrac{1}{4} = \dfrac{3}{4}
This is also a rational number.

Option C: (1+cos(2π9))(1+cos(4π9))(1+cos(8π9))(1 + \cos (\dfrac{{2\pi }}{9}))(1 + \cos (\dfrac{{4\pi }}{9}))(1 + \cos (\dfrac{{8\pi }}{9}))
We know that cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}
Using this formula, we get: (1+cos(2π9))(1+cos(4π9))(1+cos(8π9))=8(cos2(π9))(cos2(2π9))(cos2(4π9))(1 + \cos (\dfrac{{2\pi }}{9}))(1 + \cos (\dfrac{{4\pi }}{9}))(1 + \cos (\dfrac{{8\pi }}{9})) = 8({\cos ^2}(\dfrac{\pi }{9}))({\cos ^2}(\dfrac{{2\pi }}{9}))({\cos ^2}(\dfrac{{4\pi }}{9}))
8[(cos(π9))(cos(2π9))(cos(4π9))]28{[(\cos (\dfrac{\pi }{9}))(\cos (\dfrac{{2\pi }}{9}))(\cos (\dfrac{{4\pi }}{9}))]^2}
Multiplying and dividing by sin(π9)\sin \left( {\dfrac{\pi }{9}} \right) we get:
8((cos(π9))(cos(2π9))(cos(4π9))sin(π9)×sin(π9))28{\left( {\dfrac{{(\cos (\dfrac{\pi }{9}))(\cos (\dfrac{{2\pi }}{9}))(\cos (\dfrac{{4\pi }}{9}))}}{{\sin (\dfrac{\pi }{9})}} \times \sin (\dfrac{\pi }{9})} \right)^2}
Using the formula sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta , we can simplify we get:
8(sin(π9)(cos(π9))(cos(2π9))(cos(4π9))sin(π9))2=8(sin(2π9))(cos(2π9))(cos(4π9))sin(π9))28{\left( {\dfrac{{\sin (\dfrac{\pi }{9})(\cos (\dfrac{\pi }{9}))(\cos (\dfrac{{2\pi }}{9}))(\cos (\dfrac{{4\pi }}{9}))}}{{\sin (\dfrac{\pi }{9})}}} \right)^2} = 8{\left( {\dfrac{{\sin (\dfrac{{2\pi }}{9}))(\cos (\dfrac{{2\pi }}{9}))(\cos (\dfrac{{4\pi }}{9}))}}{{\sin (\dfrac{\pi }{9})}}} \right)^2}
8(2sin(2π9)(cos(2π9))(cos(4π9))2×2sin(π9))2=8(sin(4π9)cos(4π9)4sin(π9))28{\left( {\dfrac{{2\sin (\dfrac{{2\pi }}{9})(\cos (\dfrac{{2\pi }}{9}))(\cos (\dfrac{{4\pi }}{9}))}}{{2 \times 2\sin (\dfrac{\pi }{9})}}} \right)^2} = 8{\left( {\dfrac{{\sin (\dfrac{{4\pi }}{9})\cos (\dfrac{{4\pi }}{9})}}{{4\sin (\dfrac{\pi }{9})}}} \right)^2}
8(2sin(4π9)cos(4π9)8sin(π9))2=8(sin(8π9)8sin(π9))28{\left( {\dfrac{{2\sin (\dfrac{{4\pi }}{9})\cos (\dfrac{{4\pi }}{9})}}{{8\sin (\dfrac{\pi }{9})}}} \right)^2} = 8{\left( {\dfrac{{\sin (\dfrac{{8\pi }}{9})}}{{8\sin (\dfrac{\pi }{9})}}} \right)^2}
We know that 8π9+π9=π\dfrac{{8\pi }}{9} + \dfrac{\pi }{9} = \pi
The equation simplifies to: 8×(18)2=188 \times {\left( {\dfrac{1}{8}} \right)^2} = \dfrac{1}{8}
This is also a rational number.
All the options are rational numbers.

So, the correct answer is “Option A,B and C”.

Note: This question becomes easy to solve if one remembers the trigonometric formulae used in the question above. This is not the only solution to solve the above question, one can use many methods. We can also directly substitute the trigonometric ratios, but this is not a suggestible method.