Solveeit Logo

Question

Question: Which of the following pairs of linear equations intersect at a point, parallel or coincident 1\. ...

Which of the following pairs of linear equations intersect at a point, parallel or coincident
1. 5x4y+8=0;7x+6y9=05x-4y+8=0;7x+6y-9=0
2. 9x+3y+12=0;18x+6y+24=09x+3y+12=0;18x+6y+24=0
3. 6x3y+10=0;2xy+9=06x-3y+10=0;2x-y+9=0

Explanation

Solution

Hint : We first state the conditions for the given pairs of linear equations to intersect at a point, to be parallel or coincident. The three conditions to be a1a2=b1b2=c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}, a1a2=b1b2c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}, a1a2b1b2\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}. We find the values for the given equations and find the solution.

Complete step by step solution:
We take two arbitrary linear equations a1x+b1y+c1=0;a2x+b2y+c2=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0;{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0 and the ratio of their respective coefficients. We get a1a2,b1b2,c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}},\dfrac{{{b}_{1}}}{{{b}_{2}}},\dfrac{{{c}_{1}}}{{{c}_{2}}}.
Now if a1a2=b1b2=c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}} satisfies, we can say the lines are coincident.
If a1a2=b1b2c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}} satisfies, we can say the lines are parallel.
If a1a2b1b2\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}} satisfies, we can say the lines intersect at a point.

We now check the condition for the given pairs of linear equations.
For 5x4y+8=0;7x+6y9=05x-4y+8=0;7x+6y-9=0, we get the coefficients as 57,46,89\dfrac{5}{7},\dfrac{-4}{6},\dfrac{8}{-9}.
The relation for the lines is a1a2b1b2\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}. Therefore, the lines intersect at a point.

For 9x+3y+12=0;18x+6y+24=09x+3y+12=0;18x+6y+24=0, we get the coefficients as 918,36,1224\dfrac{9}{18},\dfrac{3}{6},\dfrac{12}{24}.
The simplified forms are 918=12,36=12,1224=12\dfrac{9}{18}=\dfrac{1}{2},\dfrac{3}{6}=\dfrac{1}{2},\dfrac{12}{24}=\dfrac{1}{2}.
The relation for the lines is a1a2=b1b2=c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}. Therefore, the lines are coincident.

For 6x3y+10=0;2xy+9=06x-3y+10=0;2x-y+9=0, we get the coefficients as 62=3,31=3,109\dfrac{6}{2}=3,\dfrac{-3}{-1}=3,\dfrac{10}{9}.
The relation for the lines is a1a2=b1b2c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}. Therefore, the lines are parallel.

Note : We need to first care about the coefficients of the variables. As they decide where the lines intersect or not. The condition of parallel and coincident is almost similar. The ratio of the constant differentiates them into two parts.