Solveeit Logo

Question

Physics Question on Units and measurement

Which of the following pairs does not have same dimensions ?

A

impulse and momentum

B

moment of inertia and moment of force

C

angular momentum and Planck?? constant

D

work and torque

Answer

moment of inertia and moment of force

Explanation

Solution

Impulse =F×t= F \times t =m(v2v1)t×t=m(v2v1)=\frac{m\left(v_{2}-v_{1}\right)}{t}\times t=m\left(v_{2}-v_{1}\right) = change in momentum \therefore [Impulse] = [Momentum] Angular momentum, L=mvrL = mvr Planck's constant, [h]=[h] = [energy] ×\times [time] [F×r×time]=m(v2v1)t×r×t\Rightarrow \left[F\times r\times \text{time}\right]=\frac{m\left(v_{2}-v_{1}\right)}{t}\times r\times t m(v2v1)×r=\Rightarrow m\left(v_{2}-v_{1}\right)\times r=(change of momentum) ×r\times r [h]=[L].\therefore\, \left[h\right] = \left[L\right]. Work, W=F.d:=\vec{F}.\vec{d} : Torque, τ=r×F\tau=\vec{r}\times\vec{F} [W]=[τ]\therefore\, \left[W\right]=\left[\tau\right] Moment of inertia, I=mr2I = mr^{2} = mass ×\times (distance)2^{2} Moment of force, τ=r×F=\tau=\vec{r}\times\vec{F} = distance ×\times force == distance ×change of momentumtime\times\frac{\text{change of momentum}}{\text{time}} [I][τ].\therefore \left[I\right]\ne\left[\tau\right]. Therefore, moment of inertia and moment of force have different dimensions.