Solveeit Logo

Question

Question: Which of the following options represents the correct bond order? (a)- \(O_{2}^{-}\) >\({{O}_{2}}\...

Which of the following options represents the correct bond order?
(a)- O2O_{2}^{-} >O2{{O}_{2}} <O2+O_{2}^{+}
(b)- O2O_{2}^{-} <O2{{O}_{2}} >O2+O_{2}^{+}
(c)- O2O_{2}^{-} >O2{{O}_{2}} >O2+O_{2}^{+}
(d)- O2O_{2}^{-} <O2{{O}_{2}} <O2+O_{2}^{+}

Explanation

Solution

The bond order of the molecules or ions can be calculated by the formula: B.O.=12(NbNa)B.O.=\dfrac{1}{2}({{N}_{b}}-{{N}_{a}}), where Nb{{N}_{b}} is the number of electrons present in the bonding orbital and Na{{N}_{a}} is the number of electrons present in the antibonding orbital.

Complete step by step answer:
The stability of a molecule is decided on the factor of bond order of that molecule and it is calculated by the formula:
B.O.=12(NbNa)B.O.=\dfrac{1}{2}({{N}_{b}}-{{N}_{a}})
Where Nb{{N}_{b}} is the number of electrons present in the bonding orbital and Na{{N}_{a}} is the number of electrons present in the antibonding orbital.
InO2O_{2}^{-}, there is a negative charge on the oxygen atom that means that one electron is added to the molecule. The number of electrons in O2{{O}_{2}} is 16 and adding 1 electron, the total number of the electrons in O2O_{2}^{-} will be 17.
The configuration will be:
σ1s2 σ1s2 σ2s2 σ2s2 σ2pz2 π2px2 π2py2 π2px2 π2py1\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\text{ }\sigma 2p_{z}^{2}\text{ }\pi 2p_{x}^{2}\text{ }\pi 2p_{y}^{2}\text{ }{{\pi }^{*}}2p_{x}^{2}\text{ }{{\pi }^{*}}2p_{y}^{1}
So, the number of electrons in a bonding orbital is 10, and the number of electrons in an antibonding orbital is 7.
The bond order will be: B.O.=12(NbNa)B.O.=\dfrac{1}{2}({{N}_{b}}-{{N}_{a}})
B.O.=12(107)=32=1.5B.O.=\dfrac{1}{2}(10-7)=\dfrac{3}{2}=1.5
So, the bond order is 1.5.
InO2{{O}_{2}}, the number of electrons is 16.
The configuration will be:
σ1s2 σ1s2 σ2s2 σ2s2 σ2pz2 π2px2 π2py2 π2px1 π2py1\sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\text{ }\sigma 2p_{z}^{2}\text{ }\pi 2p_{x}^{2}\text{ }\pi 2p_{y}^{2}\text{ }{{\pi }^{*}}2p_{x}^{1}\text{ }{{\pi }^{*}}2p_{y}^{1}
So, the number of electrons in a bonding orbital is 10, and the number of electrons in an antibonding orbital is 6. The bond order will be: B.O.=12(NbNa)B.O.=\dfrac{1}{2}({{N}_{b}}-{{N}_{a}})
B.O.=12(106)=42=2B.O.=\dfrac{1}{2}(10-6)=\dfrac{4}{2}=2
So, the bond order is 2.
In O2+O_{2}^{+}, there is a positive charge on the oxygen atom that means that one electron is removed from the molecule. The number of electrons in O2{{O}_{2}} is 16 and removing 1 electron, the total number of the electrons in O2+O_{2}^{+} will be 15.
The configuration will be:
σ1s2 σ1s2 σ2s2 σ2s2 σ2pz2 π2px2 π2py2 π2px1 \sigma 1{{s}^{2}}\text{ }{{\sigma }^{*}}1{{s}^{2}}\text{ }\sigma 2{{s}^{2}}\text{ }{{\sigma }^{*}}2{{s}^{2}}\text{ }\sigma 2p_{z}^{2}\text{ }\pi 2p_{x}^{2}\text{ }\pi 2p_{y}^{2}\text{ }{{\pi }^{*}}2p_{x}^{1}\text{ }
So, the number of electrons in a bonding orbital is 10, and the number of electrons in an antibonding orbital is 5.
The bond order will be: B.O.=12(NbNa)B.O.=\dfrac{1}{2}({{N}_{b}}-{{N}_{a}})
B.O.=12(105)=52=2.5B.O.=\dfrac{1}{2}(10-5)=\dfrac{5}{2}=2.5
So, the bond order is 2.5.
So, the order will be O2O_{2}^{-} <O2{{O}_{2}} <O2+O_{2}^{+}.

Therefore, the correct answer is an option (d)- O2O_{2}^{-} <O2{{O}_{2}} <O2+O_{2}^{+}.

Note: In the configuration of the molecule the electrons  π2px and π2py\text{ }{{\pi }^{*}}2{{p}_{x}}\text{ and }{{\pi }^{*}}2{{p}_{y}} have equal energy, therefore, they are first given one-one electrons, only after that its pairing can be done.