Solveeit Logo

Question

Question: Which of the following option(s) is/are correct?...

Which of the following option(s) is/are correct?

A

16C0+16C1+16C2+...+16C16=216{^{16}}C_0 + {^{16}}C_1 + {^{16}}C_2 + ... + {^{16}}C_{16} = 2^{16}

B

16C0+16C2+16C4+...+16C16=215{^{16}}C_0 + {^{16}}C_2 + {^{16}}C_4 + ... + {^{16}}C_{16} = 2^{15}

C

16C1+16C3+16C5+...+16C15=215{^{16}}C_1 + {^{16}}C_3 + {^{16}}C_5 + ... + {^{16}}C_{15} = 2^{15}

D

16C016C1+16C216C3+...+16C16=215{^{16}}C_0 - {^{16}}C_1 + {^{16}}C_2 - {^{16}}C_3 + ... + {^{16}}C_{16} = 2^{15}

Answer

A, B, C

Explanation

Solution

The binomial expansion of (1+x)n(1+x)^n is r=0nnCrxr\sum_{r=0}^n {^n}C_r x^r. Setting x=1x=1 gives r=0nnCr=2n\sum_{r=0}^n {^n}C_r = 2^n, proving option A for n=16n=16. Setting x=1x=-1 gives r=0n(1)rnCr=0\sum_{r=0}^n (-1)^r {^n}C_r = 0 (for n1n \ge 1), disproving option D. Adding the expansions for x=1x=1 and x=1x=-1 gives 2r evennCr=2n2 \sum_{r \text{ even}} {^n}C_r = 2^n, so r evennCr=2n1\sum_{r \text{ even}} {^n}C_r = 2^{n-1}, proving option B. Subtracting the x=1x=-1 expansion from the x=1x=1 expansion gives 2r oddnCr=2n2 \sum_{r \text{ odd}} {^n}C_r = 2^n, so r oddnCr=2n1\sum_{r \text{ odd}} {^n}C_r = 2^{n-1}, proving option C.