Solveeit Logo

Question

Question: Which of the following numbers is the maximum value of the function f(x) = \(\frac{5\sin^{3}x\cos x}...

Which of the following numbers is the maximum value of the function f(x) = 5sin3xcosxtan2x+1\frac{5\sin^{3}x\cos x}{\tan^{2}x + 1}, \forall x Î R ?

A

5/8

B

¾

C

1

D

5/ 2

Answer

5/8

Explanation

Solution

Given, f(x) = 5sin3xcosxtan2x+1\frac{5\sin^{3}x\cos x}{\tan^{2}x + 1} = 5sin3xcosxsin2xcos2x+1\frac{5\sin^{3}x\cos x}{\frac{\sin^{2}x}{\cos^{2}x} + 1}

= 5(sin3x) (cos3x) = 58sin32x\frac{5}{8}\sin^{3}2x

Hence maximum value is 58\frac{5}{8}.