Solveeit Logo

Question

Physics Question on Nuclear physics

Which of the following nuclear fragments corresponding to nuclear fission between neutron (01n)and uranium isotope(92235U)is correct:\left( ^1_0 n \right) \, \text{and uranium isotope} \, \left( ^{235}_{92} \text{U} \right) \, \text{is correct:}

A

14456Ba+8936Kr+410n\frac{144}{56} \text{Ba} + \frac{89}{36} \text{Kr} + 4 \frac{1}{0} \text{n}

B

14056Xe+9438Sr+310n\frac{140}{56} \text{Xe} + \frac{94}{38} \text{Sr} + 3 \frac{1}{0} \text{n}

C

15351Sb+9941Nb+310n\frac{153}{51} \text{Sb} + \frac{99}{41} \text{Nb} + 3 \frac{1}{0} \text{n}

D

14456Ba+8936Kr+310n\frac{144}{56} \text{Ba} + \frac{89}{36} \text{Kr} + 3 \frac{1}{0} \text{n}

Answer

14456Ba+8936Kr+310n\frac{144}{56} \text{Ba} + \frac{89}{36} \text{Kr} + 3 \frac{1}{0} \text{n}

Explanation

Solution

Analyze the Fission Reaction:
The nuclear fission of 92235U^ {235}_{92} \text{U} typically occurs when it absorbs a neutron, forming 92236U^ {236}_{92} \text{U} in an excited state, which then undergoes fission.
The reaction can be written as:
92235U+01nfission fragments+neutrons^{235}_{92} \text{U} + ^{1}_{0} \text{n} \rightarrow \text{fission fragments} + \text{neutrons}

Check for Conservation of Mass Number and Atomic Number:
For each option, verify that the total mass number (A) and atomic number (Z) on the right side of the reaction matches the total on the left side.
Total Mass Number (A): 235+1=236235 + 1 = 236
Total Atomic Number (Z): 9292

Evaluate Each Option:
Option 1: 56144Ba+3689Kr+401n^{144}_{56} \text{Ba} + ^{89}_{36} \text{Kr} + 4 ^{1}_{0} \text{n}
Mass number: 144+89+4×1=236144 + 89 + 4 \times 1 = 236
Atomic number: 56+36+4×0=9256 + 36 + 4 \times 0 = 92
This satisfies the mass and atomic number balance.

Option 2: 56140Xe+3894Sr+301n^{140}_{56} \text{Xe} + ^{94}_{38} \text{Sr} + 3 ^{1}_{0} \text{n}
Mass number: 140+94+3×1=237140 + 94 + 3 \times 1 = 237
Atomic number: 56+38+3×0=9456 + 38 + 3 \times 0 = 94
This does not satisfy the balance.

Option 3: 51153Sb+4199Nb+301n^{153}_{51} \text{Sb} + ^{99}_{41} \text{Nb} + 3 ^{1}_{0} \text{n}
Mass number: 153+99+3×1=256153 + 99 + 3 \times 1 = 256
Atomic number: 51+41+3×0=9251 + 41 + 3 \times 0 = 92
This does not satisfy the balance.

Option 4: 56144Ba+3689Kr+301n^{144}_{56} \text{Ba} + ^{89}_{36} \text{Kr} + 3 ^{1}_{0} \text{n}
Mass number: 144+89+3×1=236144 + 89 + 3 \times 1 = 236
Atomic number: 56+36+3×0=9256 + 36 + 3 \times 0 = 92
This satisfies the mass and atomic number balance.

Conclusion:
Only Option 4 satisfies the conservation of both mass number and atomic number in the nuclear fission process.