Solveeit Logo

Question

Question: Which of the following limits is in the indeterminate form? (a) \[\displaystyle \lim_{x \to \infty...

Which of the following limits is in the indeterminate form?
(a) limx(17)x\displaystyle \lim_{x \to \infty }{{\left( \dfrac{1}{7} \right)}^{x}}
(b) limx1x\displaystyle \lim_{x \to \infty }{{1}^{x}}
(c) limx5x\displaystyle \lim_{x \to \infty }{{5}^{x}}
(d) limx(1+1x)x\displaystyle \lim_{x \to \infty }{{\left( 1+\dfrac{1}{x} \right)}^{x}}

Explanation

Solution

In this question, we have to find whether the given options are of the Indeterminate forms or not. Thus, we know that an indeterminate form means when the limit of two functions are not determined solely from the limit of the individual function. Thus, in this problem, we will solve all the four parts by using logarithm function and the basic mathematical rule, to get the solution.

Complete step by step answer:
As, we know that an indeterminate form means when the limit of two functions are not determined solely from the limit of the individual function. The forms 00,,0.,0,,1,\dfrac{0}{0},\dfrac{\infty }{\infty },0.\infty ,{{0}^{{}^\circ }},{{\infty }^{{}^\circ }},{{1}^{\infty }},\infty -\infty are all called indeterminate forms.
Thus, let us solve all the four parts of the given problem.
(a) limx(17)x\displaystyle \lim_{x \to \infty }{{\left( \dfrac{1}{7} \right)}^{x}}
Let us put the log function in the above limit, we get
log(limx(17)x)\Rightarrow \log \left( \displaystyle \lim_{x \to \infty }{{\left( \dfrac{1}{7} \right)}^{x}} \right)
Now, we will apply the log-limit formula log(limx)=lim(logx)\log \left( \lim x \right)=\lim \left( \log x \right) in the above equation, we get
limx(log(17)x)\Rightarrow \displaystyle \lim_{x \to \infty }\left( \log {{\left( \dfrac{1}{7} \right)}^{x}} \right)
So, on solving the log function, we get
limx(xlog(17))\Rightarrow \displaystyle \lim_{x \to \infty }\left( x\log \left( \dfrac{1}{7} \right) \right)
Now, we will apply the log formula log(ab)=logalogb\log \left( \dfrac{a}{b} \right)=\log a-\log b in the above equation, we get
limx(x(log1log7))\Rightarrow \displaystyle \lim_{x \to \infty }\left( x\left( \log 1-\log 7 \right) \right)
Now, we will apply the limit in place of x in the above equation, we get
(log1log7)\Rightarrow \infty \left( \log 1-\log 7 \right)
Also, log1=0, thus we get
(0log7)\Rightarrow \infty \left( 0-\log 7 \right)
On further solving, we get
(log7)\Rightarrow \infty \left( -\log 7 \right)
Thus, we know that .log7\infty .-\log 7 is not an indeterminate form, therefore limx(17)x\displaystyle \lim_{x \to \infty }{{\left( \dfrac{1}{7} \right)}^{x}} is not an indeterminate form.
(b) limx1x\displaystyle \lim_{x \to \infty }{{1}^{x}}
Let us put the log function in the above limit, we get
log(limx1x)\Rightarrow \log \left( \displaystyle \lim_{x \to \infty }{{1}^{x}} \right)
Now, we will apply the log-limit formula log(limx)=lim(logx)\log \left( \lim x \right)=\lim \left( \log x \right) in the above equation, we get
limx(log1x)\Rightarrow \displaystyle \lim_{x \to \infty }\left( \log {{1}^{x}} \right)
So, on solving the log function, we get
limx(xlog1)\Rightarrow \displaystyle \lim_{x \to \infty }\left( x\log 1 \right)
Now, we will apply the limit in place of x in the above equation, we get
.log1\Rightarrow \infty .\log 1
Also, log1=0, thus we get
.0\Rightarrow \infty .0
Thus, we know that .0\infty .0 is an indeterminate form, therefore limx1x\displaystyle \lim_{x \to \infty }{{1}^{x}} is an indeterminate form.
(c) limx5x\displaystyle \lim_{x \to \infty }{{5}^{x}}
Let us put the log function in the above limit, we get
log(limx5x)\Rightarrow \log \left( \displaystyle \lim_{x \to \infty }{{5}^{x}} \right)
Now, we will apply the log-limit formula log(limx)=lim(logx)\log \left( \lim x \right)=\lim \left( \log x \right) in the above equation, we get
limx(log5x)\Rightarrow \displaystyle \lim_{x \to \infty }\left( \log {{5}^{x}} \right)
So, on solving the log function, we get
limx(xlog5)\Rightarrow \displaystyle \lim_{x \to \infty }\left( x\log 5 \right)
Now, we will apply the limit in place of x in the above equation, we get
.log5\Rightarrow \infty .\log 5
Thus, we did not get any form of indeterminate form, therefore limx5x\displaystyle \lim_{x \to \infty }{{5}^{x}} is not an indeterminate form.
(d) limx(1+1x)x\displaystyle \lim_{x \to \infty }{{\left( 1+\dfrac{1}{x} \right)}^{x}}
So, let us first substitute x=x=\infty in the above equation, we get
(1+1)\Rightarrow {{\left( 1+\dfrac{1}{\infty } \right)}^{\infty }}
As we know that, 1=0\dfrac{1}{\infty }=0 , therefore we get
(1+0)\Rightarrow {{\left( 1+0 \right)}^{\infty }}
On further simplification, we get
(1)\Rightarrow {{\left( 1 \right)}^{\infty }}
Thus, from part (b) we get that 1{{1}^{\infty }} is an indeterminate form, therefore limx(1+1x)x\displaystyle \lim_{x \to \infty }{{\left( 1+\dfrac{1}{x} \right)}^{x}} is an indeterminate form.

So, the correct answer is “Option b and d”.

Note: While solving this problem, do mention all the steps properly to avoid confusion and mathematical errors. Do not confuse with limx1x\displaystyle \lim_{x \to \infty }{{1}^{x}} and limx5x\displaystyle \lim_{x \to \infty }{{5}^{x}} , here the base are different, thus the solution will be different. Also, mention the formula you are using to get the accurate solution.