Solveeit Logo

Question

Question: Which of the following is/are **NOT** a pair of identical functions: $\square$ $f(x) = \log x^2; g(...

Which of the following is/are NOT a pair of identical functions:

\square f(x)=logx2;g(x)=2logxf(x) = \log x^2; g(x) = 2 \log x

\square f(x)=sin(sin1x);g(x)=cos(cos1x)f(x) = \sin (\sin^{-1} x); g(x) = \cos (\cos^{-1} x)

\square f(x)=1+2cosxsinx(2+secx),g(x)=tanxf(x) = \frac{1+2 \cos x}{\sin x(2+\sec x)}, g(x) = \tan x

\square f(x)=cot2x.cos2x,g(x)=cot2xcos2xf(x) = \cot^2 x . \cos^2 x, g(x) = \cot^2 x - \cos^2 x

A

f(x)=logx2;g(x)=2logxf(x) = \log x^2; g(x) = 2 \log x

B

f(x)=sin(sin1x);g(x)=cos(cos1x)f(x) = \sin (\sin^{-1} x); g(x) = \cos (\cos^{-1} x)

C

f(x)=1+2cosxsinx(2+secx),g(x)=tanxf(x) = \frac{1+2 \cos x}{\sin x(2+\sec x)}, g(x) = \tan x

D

f(x)=cot2x.cos2x,g(x)=cot2xcos2xf(x) = \cot^2 x . \cos^2 x, g(x) = \cot^2 x - \cos^2 x

Answer

Pair 1 and Pair 3 are not identical functions.

Explanation

Solution

To determine which pairs of functions are not identical, we need to compare their domains and their functional values over the common domain. Two functions f(x)f(x) and g(x)g(x) are identical if and only if:

  1. Domain of ff = Domain of gg.
  2. f(x)=g(x)f(x) = g(x) for all xx in the common domain.

Let's examine each pair:

Pair 1: f(x)=logx2;g(x)=2logxf(x) = \log x^2; g(x) = 2 \log x

  • Domain of f(x)f(x): The argument of the logarithm must be positive, so x2>0x^2 > 0. This is true for all xRx \in \mathbb{R} except x=0x=0. Domain of ff is (,0)(0,)(-\infty, 0) \cup (0, \infty).
  • Domain of g(x)g(x): The argument of the logarithm must be positive, so x>0x > 0. Domain of gg is (0,)(0, \infty).

Since the domains are different, the functions are not identical.

Pair 2: f(x)=sin(sin1x);g(x)=cos(cos1x)f(x) = \sin (\sin^{-1} x); g(x) = \cos (\cos^{-1} x)

  • Domain of f(x)f(x): The function sin1x\sin^{-1} x is defined for x[1,1]x \in [-1, 1]. The function siny\sin y is defined for all real yy. So, the domain of f(x)f(x) is [1,1][-1, 1]. For x[1,1]x \in [-1, 1], sin(sin1x)=x\sin (\sin^{-1} x) = x. Thus, f(x)=xf(x) = x for x[1,1]x \in [-1, 1].
  • Domain of g(x)g(x): The function cos1x\cos^{-1} x is defined for x[1,1]x \in [-1, 1]. The function cosy\cos y is defined for all real yy. So, the domain of g(x)g(x) is [1,1][-1, 1]. For x[1,1]x \in [-1, 1], cos(cos1x)=x\cos (\cos^{-1} x) = x. Thus, g(x)=xg(x) = x for x[1,1]x \in [-1, 1].

The domains are the same, [1,1][-1, 1]. For all xx in this domain, f(x)=xf(x) = x and g(x)=xg(x) = x, so f(x)=g(x)f(x) = g(x). The functions are identical.

Pair 3: f(x)=1+2cosxsinx(2+secx),g(x)=tanxf(x) = \frac{1+2 \cos x}{\sin x(2+\sec x)}, g(x) = \tan x

  • Domain of f(x)f(x): Restrictions arise from denominators and the definition of secx\sec x. sinx0    xnπ,nZ\sin x \neq 0 \implies x \neq n\pi, n \in \mathbb{Z}. cosx0    x(n+12)π,nZ\cos x \neq 0 \implies x \neq (n + \frac{1}{2})\pi, n \in \mathbb{Z} (due to secx\sec x). 2+secx0    2+1cosx0    2cosx+1cosx0    2cosx+10    cosx122 + \sec x \neq 0 \implies 2 + \frac{1}{\cos x} \neq 0 \implies \frac{2 \cos x + 1}{\cos x} \neq 0 \implies 2 \cos x + 1 \neq 0 \implies \cos x \neq -\frac{1}{2}. cosx=12\cos x = -\frac{1}{2} for x=2nπ±2π3,nZx = 2n\pi \pm \frac{2\pi}{3}, n \in \mathbb{Z}. Domain of ff is R{nπ}{(n+12)π}{2nπ±2π3}\mathbb{R} \setminus \{n\pi\} \setminus \{(n + \frac{1}{2})\pi\} \setminus \{2n\pi \pm \frac{2\pi}{3}\}.
  • Domain of g(x)=tanx=sinxcosxg(x) = \tan x = \frac{\sin x}{\cos x}: cosx0    x(n+12)π,nZ\cos x \neq 0 \implies x \neq (n + \frac{1}{2})\pi, n \in \mathbb{Z}.

The domains are different. For example, x=πx=\pi is in the domain of g(x)g(x) but not in the domain of f(x)f(x). Thus, the functions are not identical.

Pair 4: f(x)=cot2x.cos2x,g(x)=cot2xcos2xf(x) = \cot^2 x . \cos^2 x, g(x) = \cot^2 x - \cos^2 x

  • Domain of f(x)f(x): cotx=cosxsinx\cot x = \frac{\cos x}{\sin x} is defined when sinx0\sin x \neq 0, so xnπ,nZx \neq n\pi, n \in \mathbb{Z}. cosx\cos x is defined everywhere. Domain of ff is R{nπ}\mathbb{R} \setminus \{n\pi\}.
  • Domain of g(x)g(x): cotx=cosxsinx\cot x = \frac{\cos x}{\sin x} is defined when sinx0\sin x \neq 0, so xnπ,nZx \neq n\pi, n \in \mathbb{Z}. cosx\cos x is defined everywhere. Domain of gg is R{nπ}\mathbb{R} \setminus \{n\pi\}.

The domains are the same.

Now let's check if f(x)=g(x)f(x) = g(x) for all xx in the domain:

g(x)=cot2xcos2x=cos2xsin2xcos2x=cos2x(1sin2x1)=cos2x(1sin2xsin2x)g(x) = \cot^2 x - \cos^2 x = \frac{\cos^2 x}{\sin^2 x} - \cos^2 x = \cos^2 x \left( \frac{1}{\sin^2 x} - 1 \right) = \cos^2 x \left( \frac{1 - \sin^2 x}{\sin^2 x} \right)

g(x)=cos2x(cos2xsin2x)=cos2xcot2x=f(x)g(x) = \cos^2 x \left( \frac{\cos^2 x}{\sin^2 x} \right) = \cos^2 x \cot^2 x = f(x).

Since the domains are the same and f(x)=g(x)f(x) = g(x) for all xx in the domain, the functions are identical.

The question asks which of the following is/are NOT a pair of identical functions. Based on our analysis, Pair 1 and Pair 3 are not identical functions.