Solveeit Logo

Question

Question: Which of the following is/are correct ?...

Which of the following is/are correct ?

A

For the incompressible liquid (dHdP)T\left( \frac{dH}{dP} \right)_{T} is approximately equal to volume of liquid

B

For ideal gas (dHdP)T\left( \frac{dH}{dP} \right)_{T} is equal to zero

C

For real gas if (dEdV)T\left( \frac{dE}{dV} \right)_{T} = 0 then not necessarily (dHdP)T\left( \frac{dH}{dP} \right)_{T} is equal to zero

D

All of the above are correct

Answer

All of the above are correct

Explanation

Solution

H = E + PV

(dHdP)T\left( \frac{dH}{dP} \right)_{T} = (dEdP)T\left( \frac{dE}{dP} \right)_{T} + P (dVdP)T\left( \frac{dV}{dP} \right)_{T} + V

For liquid, (dHdP)T\left( \frac{dH}{dP} \right)_{T} = (dEdV)T\left( \frac{dE}{dV} \right)_{T} (dVdP)T\left( \frac{dV}{dP} \right)_{T} +

P (dVdP)T\left( \frac{dV}{dP} \right)_{T} + V

For incompressible liquid, (dVdP)T\left( \frac{dV}{dP} \right)_{T} 0.

\ (dHdP)T\left( \frac{dH}{dP} \right)_{T} V

For ideal gas, (dHdP)T\left( \frac{dH}{dP} \right)_{T} = 0

For the real gas, if (dEdV)T\left( \frac{dE}{dV} \right)_{T} = 0,

then (dHdP)T\left( \frac{dH}{dP} \right)_{T} = P (dVdP)T\left( \frac{dV}{dP} \right)_{T} + V ¹ 0

\ limpo\lim_{p \rightarrow o} dzdp\frac{dz}{dp} 쳿\overset{쳿}{–} (baRT)\left( b–\frac{a}{RT} \right) 1RT\frac{1}{RT}

When T < TB then T < aRb\frac{a}{Rb} or b < aRT\frac{a}{RT}

hence b – aRT\frac{a}{RT} is negative therefore dzdp\frac{dz}{dp} is negative – it means at very low pressure Z decreases with pressure below the Boyle's temperature.