Solveeit Logo

Question

Question: Which of the following is valid If \(p={{\sin }^{2}}x+{{\cos }^{4}}x\), then A. \(\dfrac{3}{4}\le ...

Which of the following is valid If p=sin2x+cos4xp={{\sin }^{2}}x+{{\cos }^{4}}x, then
A. 34p1\dfrac{3}{4}\le p\le 1
B. 316p14\dfrac{3}{16}\le p\le \dfrac{1}{4}
C. 14p1\dfrac{1}{4}\le p\le 1
D. None of these

Explanation

Solution

In this problem we will be using the trigonometric identity i.e. sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. First, we will expand the term cos4x{{\cos }^{4}}x as cos2x.cos2x{{\cos }^{2}}x.{{\cos }^{2}}x. Now we will substitute the value of cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x from the identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 in pp and we will find the value of pp. Again, we will find the value of pp by substituting sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x in pp. From these two values we will find the range of the pp.

Complete step-by-step solution
Given that, p=sin2x+cos4xp={{\sin }^{2}}x+{{\cos }^{4}}x
We will be substituting cos4x=cos2x.cos2x{{\cos }^{4}}x={{\cos }^{2}}x.{{\cos }^{2}}x in the above equation, then
p=sin2x+cos2x.cos2xp={{\sin }^{2}}x+{{\cos }^{2}}x.{{\cos }^{2}}x
We have the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, from this identity we will be substituting cos2x=(1sin2x){{\cos }^{2}}x=\left( 1-{{\sin }^{2}}x \right) in pp, then
p=sin2x+cos2x(1sin2x) =sin2x+cos2xsin2x.cos2x\begin{aligned} & p={{\sin }^{2}}x+{{\cos }^{2}}x\left( 1-{{\sin }^{2}}x \right) \\\ & ={{\sin }^{2}}x+{{\cos }^{2}}x-{{\sin }^{2}}x.{{\cos }^{2}}x \end{aligned}
Substituting sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 in the above equation, then
p=1sin2x.cos2xp=1-{{\sin }^{2}}x.{{\cos }^{2}}x
From the above equation, we can say that for any value of xx the value of ppis less than or equal to 11. Mathematically
p1....(i)p\le 1....\left( \text{i} \right)
Again, p=sin2x+cos4xp={{\sin }^{2}}x+{{\cos }^{4}}x
Now we are going to substituting sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x in the above equation, then
p=1cos2x+cos4xp=1-{{\cos }^{2}}x+{{\cos }^{4}}x
Now we will rearrange the above terms as below,
p=(cos2x)22.12cos2x+1p={{\left( {{\cos }^{2}}x \right)}^{2}}-2.\dfrac{1}{2}{{\cos }^{2}}x+1
Now, we will performing method of completing square by adding and subtracting (12)2{{\left( \dfrac{1}{2} \right)}^{2}} in the above equation, then

& p={{\left( {{\cos }^{2}}x \right)}^{2}}-2.\dfrac{1}{2}{{\cos }^{2}}x+1+{{\left( \dfrac{1}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}} \\\ & ={{\left( {{\cos }^{2}}x \right)}^{2}}-2.\dfrac{1}{2}{{\cos }^{2}}x+{{\left( \dfrac{1}{2} \right)}^{2}}+1-\dfrac{1}{4} \end{aligned}$$ We know that ${{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}$, then $p={{\left( {{\cos }^{2}}x-\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}$ From the above equation we can say that, the value of $p$ is greater than or equal to $\dfrac{3}{4}$. Mathematically $p\ge \dfrac{3}{4}....\left( \text{ii} \right)$ From equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$, we have $\dfrac{3}{4}\le p\le 1$ **Note:** The problem is completely based on the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we have some other trigonometric identities, they are $\Rightarrow {{\sec }^{2}}x-{{\tan }^{2}}x=1$ $\Rightarrow {{\csc }^{2}}x-{{\cot }^{2}}x=1$ While solving this problem student may do mistakes by writing ${{\cos }^{4}}x$ as ${{\cos }^{2}}x+{{\cos }^{2}}x$ and writing $p$ as $\begin{aligned} & p={{\sin }^{2}}x+{{\cos }^{2}}x+{{\cos }^{2}}x \\\ & =1+{{\cos }^{2}}x \\\ \end{aligned}$ Which is not correct.