Solveeit Logo

Question

Question: Which of the following is the solution of set of the equation \[2\cos^{- 1}(x) = \text{cot}^{- 1}\le...

Which of the following is the solution of set of the equation 2cos1(x)=cot1(2x212x1x2) 2\cos^{- 1}(x) = \text{cot}^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\ ?
A. (0, 1)(0,\ 1)
B. (1, 1)0( - 1,\ 1) - \\{ 0\\}
C. (1, 0)( - 1,\ 0)
D. [1, 1]\lbrack – 1,\ 1\rbrack

Explanation

Solution

In this question, we need to find out the solution set of the values of xx. First, let us substitute cos θ\cos\ \theta in the place of xx. Then we can solve it by considering the left and right part of the given expression separately . To solve the expression we have to use trigonometric formulas and identity. Then we have to equate both the left and right part of the expression. Using this we can easily find out the interval of xx.

Complete step by step answer:
Given, 2cos1(x)=cot1(2x212x1x2) 2\cos^{- 1}(x) = \cot^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\
Here we need to find out the interval of xx. Let us substitute,
x=cos θx = \cos\ \theta
 x[1, 1]\Rightarrow \ x \in \lbrack – 1,\ 1\rbrack
Since we know that the range of cosine function is [1, 1]\lbrack – 1,\ 1\rbrack
On substituting x=cos θx = \cos\ \theta
We get,
 2cos1(cos θ)=cot1(2(cos θ)212(cos θ)1(cos θ)2)\Rightarrow \ 2\cos^{- 1}\left( \cos\ \theta \right) = \cot^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sqrt{1 - \left( \cos\ \theta \right)^{2}}} \right)

First let us consider the left part of the expression.
  2cos1(cos θ)\Rightarrow \ \ 2\cos^{- 1}\left( \cos\ \theta \right)
We know that cos1(cos θ)=θ\cos^{- 1}\left( \cos\ \theta \right) = \theta
Hence we get,
 2(θ)\Rightarrow \ 2(\theta)
Thus θ[0, π]\theta \in \lbrack 0,\ \pi\rbrack •••(1)
Now let us consider the right part of the expression.
 cot1(2(cos θ)212(cos θ)1(cos θ)2)\Rightarrow \ \cot^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sqrt{1 - \left( \cos\ \theta \right)^{2}}} \right)
We know that sin θ=1(cos θ)2\sin\ \theta = \sqrt{1 - \left( \cos\ \theta \right)^{2}}

By substituting sin θ\sin\ \theta in the place of 1(cos θ)2\sqrt{1 - \left( \cos\ \theta \right)^{2}} ,
We get,
 cot1(2(cos θ)212(cos θ)sin θ)\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sin\ \theta} \right)
We also know that 2(cos θ)21=cos 2θ2\left( \cos\ \theta \right)^{2} – 1 = \cos\ 2\theta ,
Thus we get,
 cot1(cos 2θ2(cos θ)sin θ)\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{\cos\ 2\theta}{2\left( {\cos\ \theta} \right)\sin\ \theta} \right)
By using the formula sin 2θ=2cos θ sin θ\sin\ 2\theta = 2\cos\ \theta\ \sin\ \theta,
We get,
 cot1(cos 2θsin 2θ)\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{\cos\ 2\theta}{\sin\ 2\theta} \right)

We also know that cotangent is the ratio of the cosine function to the sine function.Thus we get,
 cot1(cot 2θ)\Rightarrow \ \text{cot}^{- 1}\left( \cot\ 2\theta \right)
We know that cot1(cot 2θ)=2θ\text{cot}^{- 1}\left( \cot\ 2\theta \right) = 2\theta
By using this we get,
 2θ\Rightarrow \ 2\theta
 0<2θ<π\Rightarrow \ 0 < 2\theta < \pi
On dividing by 22 ,
We get,
0<θ<π20 < \theta < \dfrac{\pi}{2} •••(2)
Now on equating the expression (1) and (2) ,
We get
0<θ<π20 < \theta < \dfrac{\pi}{2}

By putting cosine function,
We get,
 cos(0)<cos(θ)<cos(π2)\Rightarrow \ \cos\left( 0 \right) < \cos\left( \theta \right) < \cos\left( \dfrac{\pi}{2} \right)
We know that cos(0)\cos(0) is 00 and cos(π2)\cos\left( \dfrac{\pi}{2} \right) is 11
 0<cos θ<1\Rightarrow \ 0 < \cos\ \theta < 1
By substituting x=cos θx = \cos\ \theta ,
We get,
 0<x<1\Rightarrow \ 0 < x < 1
Therefore x(0, 1)x \in (0,\ 1). Thus we get the solution of set of the equation 2cos1(x)=cot1(2x212x1x2) 2\cos^{- 1}\left( x \right) = \cot^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\ is  (0, 1)\ (0,\ 1)

Hence, the correct answer is option A.

Note: In order to solve these types of questions, we must have a stronger grip over the trigonometric properties . We must remember that the range of cosine function is [1,1]\lbrack - 1,1\rbrack.The range of the cosine function helps in getting us the required interval of xx and helps us on the right track to reach our answer. We should also be careful while solving the inverse trigonometric functions.