Solveeit Logo

Question

Question: Which of the following is the probability of guessing correctly at least 7 out of 10 answers in a "T...

Which of the following is the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test.
A. 1164\dfrac{11}{64}
B. 1132\dfrac{11}{32}
C. 1116\dfrac{11}{16}
D. 2732\dfrac{27}{32}

Explanation

Solution

To find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test, we will find the probability of an answer being true, that is, P(T)=12P\left( T \right)=\dfrac{1}{2} and probability of an answer being false, that is, P(F)=12P\left( F \right)=\dfrac{1}{2} . Probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test can be written as P(X7)=P(X=7)+P(X=8)+P(X=9)+P(X=10)P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right) . We will use the formula P(X=r)=nCrprqnrP\left( X=r \right){{=}^{n}}{{C}_{r}}{{p}^{r}}{{q}^{n-r}} to find the required probability.

Complete step by step answer:
We have to find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test.
We know that the probability of an event is given by
P(E)=Number of favourable outcomesTotal number of outcomesP\left( E \right)=\dfrac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}
Let us find the probability of an answer being true. We know that the total number of outcomes is 2 since either true or false can occur.
P(T)=12\Rightarrow P\left( T \right)=\dfrac{1}{2}
Now, let’s find the probability of an answer being false.
P(F)=12\Rightarrow P\left( F \right)=\dfrac{1}{2}
We have to find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test, that is, P(X7)P\left( X\ge 7 \right) .
We can write P(X7)P\left( X\ge 7 \right) as shown below.
P(X7)=P(X=7)+P(X=8)+P(X=9)+P(X=10)P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right)
We know that the binomial distribution formula is for any random variable X, given by;
P(X=r)=nCrprqnr...(i)P\left( X=r \right){{=}^{n}}{{C}_{r}}{{p}^{r}}{{q}^{n-r}}...(i)
where n is the number of experiments
r = 0, 1, 2, 3, 4, …
p = Probability of Success in a single experiment
q = Probability of Failure in a single experiment = 1 – p
Let us consider P(T)=p=12P\left( T \right)=p=\dfrac{1}{2} and q=1p=12=P(F)q=1-p=\dfrac{1}{2}=P\left( F \right)
Let us now find P(X7)P\left( X\ge 7 \right) using (i).
P(X7)=P(X=7)+P(X=8)+P(X=9)+P(X=10)P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right)
P(X7)=10C7(12)7(12)107+10C8(12)8(12)108+10C9(12)9(12)109+10C10(12)10(12)1010\Rightarrow P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7}}{{\left( \dfrac{1}{2} \right)}^{10-7}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8}}{{\left( \dfrac{1}{2} \right)}^{10-8}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9}}{{\left( \dfrac{1}{2} \right)}^{10-9}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}{{\left( \dfrac{1}{2} \right)}^{10-10}}
Let us now solve the powers. We will get
P(X7)=10C7(12)7(12)3+10C8(12)8(12)2+10C9(12)9(12)1+10C10(12)10(12)0P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7}}{{\left( \dfrac{1}{2} \right)}^{3}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8}}{{\left( \dfrac{1}{2} \right)}^{2}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9}}{{\left( \dfrac{1}{2} \right)}^{1}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}{{\left( \dfrac{1}{2} \right)}^{0}}
We know that am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} and a0=1{{a}^{0}}=1 . Hence, the above equation can be written as
P(X7)=10C7(12)7+3+10C8(12)8+2+10C9(12)9+1+10C10(12)10P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7+3}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8+2}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9+1}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}
Let us simplify the powers. We will get
P(X7)=10C7(12)10+10C8(12)10+10C9(12)10+10C10(12)10P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}
From the above equation, we can see that (12)10{{\left( \dfrac{1}{2} \right)}^{10}} is common. Let us take it outside.
P(X7)=(10C7+10C8+10C9+10C10)(12)10\Rightarrow P\left( X\ge 7 \right)=\left( ^{10}{{C}_{7}}{{+}^{10}}{{C}_{8}}{{+}^{10}}{{C}_{9}}{{+}^{10}}{{C}_{10}} \right){{\left( \dfrac{1}{2} \right)}^{10}}
We know that nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} . Let’s expand the above terms. We will get
P(X7)=(10!7!(107)!+10!8!(108)!+10!9!(109)!+10!10!(1010)!)(12)10P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!\left( 10-7 \right)!}+\dfrac{10!}{8!\left( 10-8 \right)!}+\dfrac{10!}{9!\left( 10-9 \right)!}+\dfrac{10!}{10!\left( 10-10 \right)!} \right){{\left( \dfrac{1}{2} \right)}^{10}}
P(X7)=(10!7!3!+10!8!2!+10!9!1!+10!10!0!)(12)10\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8!2!}+\dfrac{10!}{9!1!}+\dfrac{10!}{10!0!} \right){{\left( \dfrac{1}{2} \right)}^{10}}
We know that 0!=1. Hence, the above equation becomes
P(X7)=(10!7!3!+10!8!2!+10!9!1!+10!10!)(12)10P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8!2!}+\dfrac{10!}{9!1!}+\dfrac{10!}{10!} \right){{\left( \dfrac{1}{2} \right)}^{10}}
Let us expand the factorial. We will get
P(X7)=(10!7!3!+10!8×7!2!+10!9×8×7!+10!10×9×8×7!)(12)10P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8\times 7!2!}+\dfrac{10!}{9\times 8\times 7!}+\dfrac{10!}{10\times 9\times 8\times 7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}
We can take 10! Common from the numerator and 7! common from the denominator. We will get
P(X7)=(13!+18×2!+19×8+110×9×8)(10!7!)(12)10P\left( X\ge 7 \right)=\left( \dfrac{1}{3!}+\dfrac{1}{8\times 2!}+\dfrac{1}{9\times 8}+\dfrac{1}{10\times 9\times 8} \right)\left( \dfrac{10!}{7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}
Let us expand the factorials.
P(X7)=(13×2×1+18×2×1+19×8+110×9×8)(10×9×8×7!7!)(12)10\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{1}{3\times 2\times 1}+\dfrac{1}{8\times 2\times 1}+\dfrac{1}{9\times 8}+\dfrac{1}{10\times 9\times 8} \right)\left( \dfrac{10\times 9\times 8\times 7!}{7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}
Let’s simplify the denominators and cancel the common terms.
P(X7)=(16+116+172+1720)10×9×8×(12)10\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{1}{6}+\dfrac{1}{16}+\dfrac{1}{72}+\dfrac{1}{720} \right)10\times 9\times 8\times {{\left( \dfrac{1}{2} \right)}^{10}}
Let us take the LCM and simplify.
P(X7)=(1×1206×120+1×4516×45+1×1072×10+1720)720×(12)10P\left( X\ge 7 \right)=\left( \dfrac{1\times 120}{6\times 120}+\dfrac{1\times 45}{16\times 45}+\dfrac{1\times 10}{72\times 10}+\dfrac{1}{720} \right)720\times {{\left( \dfrac{1}{2} \right)}^{10}}
Let us solve this.

& P\left( X\ge 7 \right)=\left( \dfrac{120+45+10+1}{720} \right)720{{\left( \dfrac{1}{2} \right)}^{10}} \\\ & \Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{176}{720} \right)720{{\left( \dfrac{1}{2} \right)}^{10}} \\\ \end{aligned}$$ Let us cancel the common factors. We will get $$P\left( X\ge 7 \right)=176\times {{\left( \dfrac{1}{2} \right)}^{10}}$$ Let us expand $${{\left( \dfrac{1}{2} \right)}^{10}}$$ . We will get $$\begin{aligned} & P\left( X\ge 7 \right)=\dfrac{176}{1024} \\\ & \Rightarrow P\left( X\ge 7 \right)=\dfrac{11}{64} \\\ \end{aligned}$$ **So, the correct answer is “Option A”.** **Note:** You may mistake when writing the formula for $P\left( X=r \right)$ as $^{n}{{C}_{r}}{{p}^{r}}{{q}^{n+r}}$ . Also, there can be mistake when writing the formula for $^{n}{{C}_{r}}$ as $\dfrac{n!}{r!\left( n+r \right)!}$ . You may write the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test as $P\left( X\le 7 \right)$ which will lead to an incorrect solution. You must know the rules of exponents in order to solve the exponent numbers.