Solveeit Logo

Question

Mathematics Question on Linear Programming Problem and its Mathematical Formulation

Which of the following is the correct formulation of the linear programming problem ?

A

Max Z=2x1x2Z=2x_1-x_2 ;subject to x1+x210;x13;x10;x20x_1+x_2≤10;x_1≤3;x1≥0;x_2≤0

B

Max Z=3x1+2x2Z=3x_1+2x_2 ;subject to x1+2x211;3x1+x224;x10;x1,x20 x_1+2x2≥11;3x_1+x_2≥24;x_1≥0;x1,x_2≤0

C

Min Z=x1+5x2Z=x_1+5x_2 ;subject to 2x1+5x210;x1+3x29;x1,x202x_1+5x_2≤10;x_1+3x_2≤9;x_1,x_2≥0

D

Min Z=4x1+3x2Z=4x_1+3x_2 ;subject to x1+9x28;2x1+5x29;x10,x20x_1+9x_2≥8;2x_1+5x_2≤9;x_1≤0,x_2≥0

E

Max Z=2x1+5x2Z=2x_1+5x_2 ;subject to 4x1+9x28;2x1+3x29;x10;x1,x204x_1+9x_2≤8;2x_1+3x_2≤9;x_1≥0;x_1,x_2≤0

Answer

Max Z=2x1+5x2Z=2x_1+5x_2 ;subject to 4x1+9x28;2x1+3x29;x10;x1,x204x_1+9x_2≤8;2x_1+3x_2≤9;x_1≥0;x_1,x_2≤0

Explanation

Solution

By considering all the given options we found the option which is correct formulation for the Linear Programming problem is :

Max Z=2x1+5x2Z=2x_1+5x_2 ;subject to 4x1+9x28;2x1+3x29;x10;x1,x204x_1+9x_2≤8;2x_1+3x_2≤9;x_1≥0;x_1,x_2≤0

let us discuss how:

As in this problem, we want to maximize the objective function Z=2x1+5x2Z = 2x_1 + 5x_2 , subject to the given constraints are ;

  1. 4x1+9x284x_1 + 9x_2 ≤ 8
  2. 2x1+3x292x_1 + 3x_2 ≤ 9
  3. x10x_1 ≥ 0 (non-negativity constraint)
  4. x20x_2 ≤ 0 (non-positivity constraint)

These constraints define the feasible region , and the objective is to find the values of x1x_1 and x2x_2 that maximize ZZ within this feasible region.