Question
Mathematics Question on mathematical reasoning
Which of the following is NOT true?
p→(q∧r)≡(p→q)∧(p→r)
∼(q↔r)≡(p∧∼q)∨(∼p∧q)
(p∧∼q)↔(p→q)is a tautology.
(p→q)∧(q→r)→(p→r)is a tautology.
(p∧∼q)↔(p→q)is a tautology.
Solution
p
q
r
∼p
∼q
∼r
(p∧∼q)(x)
(p→q)(y)
(x↔y)
(q→r)(s)
(p→r)(w)
T
T
T
F
F
F
F
T
F
T
T
T
T
F
F
F
T
F
T
F
F
F
T
F
T
F
T
F
T
F
F
T
T
T
F
F
F
T
T
T
F
F
T
T
F
T
T
T
F
F
F
T
F
T
T
F
T
F
T
F
T
F
T
F
F
T
F
F
T
T
T
F
F
T
F
T
T
F
F
F
T
T
T
F
T
F
T
T
(y∧z)A
(A→w)
(p→z)B
(y∧w)C
∼(p↔q)F
(p→G)
(p∧q)E
(x∨E)D
(p∧r)G
T
T
T
T
F
T
F
F
T
F
T
F
F
F
F
F
F
F
F
T
T
F
T
F
F
T
T
F
T
T
F
T
F
F
T
F
T
T
T
T
T
T
T
T
T
F
T
T
T
T
T
T
T
F
T
T
T
T
F
T
F
F
F
T
T
T
T
F
T
F
F
F
(a) (pκq)⟷(p→q)
x⟷y is a contradiction from table.
(b) (p→q)∧(q→r)→(p→r)y∧z→w
A→w is a tautology from table.
(c) p→(q∧r)≡(p→q)∧(p→r)
p→G≡y∧w
(p→G)≡C, represent logical equivalence from table.
(d) ∼(p⟷q)≡(p∧q)∨(−p∧q)
F≡x∨E
F≡D, represent logical equivalence from table.