Solveeit Logo

Question

Mathematics Question on mathematical reasoning

Which of the following is NOT true?

A

p(qr)(pq)(pr)p\to (q\wedge r)\equiv (p\to q) \wedge (p \to r)

B

(qr)(pq)(pq)\sim (q \leftrightarrow r)\equiv (p \wedge \sim q)\vee(\sim p \wedge q)

C

(pq)(pq)(p \wedge\sim q)\leftrightarrow (p \to q)is a tautology.

D

(pq)(qr)(pr)(p \to q) \wedge (q \rightarrow r) \rightarrow (p \rightarrow r)is a tautology.

Answer

(pq)(pq)(p \wedge\sim q)\leftrightarrow (p \to q)is a tautology.

Explanation

Solution

p
q
r
p\sim p
q\sim q
r\sim r
(pq)(x)(p \wedge \sim q)(x)
(pq)(y)(p \rightarrow q)(y)
(xy)(x \leftrightarrow y)
(qr)(s)(q \rightarrow r)(s)
(pr)(w)(p \rightarrow r)(w)

T
T
T
F
F
F
F
T
F
T
T

T
T
F
F
F
T
F
T
F
F
F

T
F
T
F
T
F
T
F
F
T
T

T
F
F
F
T
T
T
F
F
T
T

F
T
T
T
F
F
F
T
F
T
T

F
T
F
T
F
T
F
T
F
F
T

F
F
T
T
T
F
F
T
F
T
T

F
F
F
T
T
T
F
T
F
T
T

(yz)A(y \wedge z)A
(Aw)(A \rightarrow w)
(pz)B(p \rightarrow z)B
(yw)C(y \wedge w)C
(pq)F\sim(p \leftrightarrow q)F
(pG)(p \rightarrow G)
(pq)E(p\wedge q)E
(xE)D(x \vee E)D
(pr)G(p\wedge r)G

T
T
T
T
F
T
F
F
T

F
T
F
F
F
F
F
F
F

F
T
T
F
T
F
F
T
T

F
T
T
F
T
F
F
T
F

T
T
T
T
T
T
T
T
T

F
T
T
T
T
T
T
T
F

T
T
T
T
F
T
F
F
F

T
T
T
T
F
T
F
F
F

(a) (pκq)(pq)(p \kappa q) \longleftrightarrow(p \rightarrow q)
xyx \longleftrightarrow y is a contradiction from table.
(b) (pq)(qr)(pr)yzw\\{(p \rightarrow q) \wedge(q \rightarrow r)\\} \rightarrow(p \rightarrow r)\\{y \wedge z\\} \rightarrow w
AwA \rightarrow w is a tautology from table.
(c) p(qr)(pq)(pr)p \rightarrow (q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)
pGywp \rightarrow G \equiv y \wedge w
(pG)C(p \rightarrow G) \equiv C, represent logical equivalence from table.
(d) (pq)(pq)(pq)\sim(p \longleftrightarrow q) \equiv(p \wedge q) \vee(-p \wedge q)
FxEF \equiv x \vee E
FDF \equiv D, represent logical equivalence from table.