Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Which of the following is not the value of 2tan1x2\,\tan^{-1}x ?

A

tan12x1+x2\tan^{-1}\frac{2x}{1+x^2}

B

tan12x1x2\tan^{-1}\frac{2x}{1-x^2}

C

cos11x21+x2\cos^{-1}\frac{1-x^2}{1+x^2}

D

sin12x1+x2\sin^{-1}\frac{2x}{1+x^2}

Answer

tan12x1+x2\tan^{-1}\frac{2x}{1+x^2}

Explanation

Solution

Since 2tanθ1tan2θ=tan2θ \frac{2\,tan\,\theta}{1-tan^{2}\theta} = tan \,2\,\theta 1tan2θ1+tan2θ=cos2θ,2tanθ1+tanθ=sin2θ\frac{ 1-tan ^{2}\theta}{1+tan^{2}\theta} = cos \,2\,\theta,\frac{ 2\,tan \,\theta}{1+tan\,\theta} = sin \,2\,\theta (b)=2θ,(c)=2θ,(d)=2θ=2tan1x\therefore \left(b\right)= 2\,\theta, \left(c\right)=2\,\theta, \left(d\right)= 2\,\theta = 2\,tan^{-1}x Hence tan12x1+x22tan1xtan^{-1} \frac{2x}{1+x^{2}} \ne 2\,tan^{-1} x