Solveeit Logo

Question

Question: Which of the following is/are true about the ellipse \({x^2} + 4{y^2} - 2x - 16y + 13 = 0\)? (A) T...

Which of the following is/are true about the ellipse x2+4y22x16y+13=0{x^2} + 4{y^2} - 2x - 16y + 13 = 0?
(A) The latus rectum of the ellipse is 11.
(B) Distance between foci of the ellipse is 434\sqrt 3 .
(C) Sum of the focal distance of a point P (x, y) on the ellipse is 44.
(D) y=3y = 3 meets the tangents drawn at the vertices of the ellipse at point P and Q, then PQ subtends a right angle at any of its foci.

Explanation

Solution

First we will convert the above equation in the standard form of ellipse so that we can find the value of a and b from the equation. Next, we need to find the eccentricity of this ellipse which is required in finding the latus rectum using the formula e=1b2a2e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} .

Complete answer:
In the above question, first we will convert the equation x2+4y22x16y+13=0{x^2} + 4{y^2} - 2x - 16y + 13 = 0 in the standard equation of an ellipse, which is (xx1)2a2+(yy1)2b2=0\dfrac{{{{\left( {x - {x_1}} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - {y_1}} \right)}^2}}}{{{b^2}}} = 0.
Therefore,
x2+4y22x16y+13=0{x^2} + 4{y^2} - 2x - 16y + 13 = 0
We can also write the above equation as,
x22x+1+4y216y+164=0\Rightarrow {x^2} - 2x + 1 + 4{y^2} - 16y + 16 - 4 = 0
Now, taking 44 as common
(x22x+1)+4(y24y+4)4=0\Rightarrow \left( {{x^2} - 2x + 1} \right) + 4\left( {{y^2} - 4y + 4} \right) - 4 = 0
On transposing, we get
(x22x+1)+4(y24y+4)=4\Rightarrow \left( {{x^2} - 2x + 1} \right) + 4\left( {{y^2} - 4y + 4} \right) = 4
Now we will use the formula (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2abin the above equation
(x1)2+4(y2)2=4\Rightarrow {\left( {x - 1} \right)^2} + 4{\left( {y - 2} \right)^2} = 4
Now, we will divide the whole equation by 44.
(x1)24+(y2)21=1\Rightarrow \dfrac{{{{\left( {x - 1} \right)}^2}}}{4} + \dfrac{{{{\left( {y - 2} \right)}^2}}}{1} = 1
(x1)2(2)2+(y2)2(1)2=1\Rightarrow \dfrac{{{{\left( {x - 1} \right)}^2}}}{{{{\left( 2 \right)}^2}}} + \dfrac{{{{\left( {y - 2} \right)}^2}}}{{{{\left( 1 \right)}^2}}} = 1
On comparing with (xx1)2a2+(yy1)2b2=0\dfrac{{{{\left( {x - {x_1}} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - {y_1}} \right)}^2}}}{{{b^2}}} = 0, we get a=2andb=1a = 2\,\,and\,\,b = 1
Now,
(A) The length of latus rectum =2b2a = \dfrac{{2{b^2}}}{a}
On substituting the values of a and b
2×(1)22\Rightarrow \dfrac{{2 \times {{\left( 1 \right)}^2}}}{2}
1\Rightarrow 1
(B) e=1b2a2e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}}
e=114e = \sqrt {1 - \dfrac{1}{4}}
e=34=32\Rightarrow e = \sqrt {\dfrac{3}{4}} = \dfrac{{\sqrt 3 }}{2}
Distance between foci of the ellipse =2ae=2×2×32=23= 2ae = 2 \times 2 \times \dfrac{{\sqrt 3 }}{2} = 2\sqrt 3
(C) Sum of the focal distance =2a=2×2=4 = 2a = 2 \times 2 = 4
(D) In this part we have to prove that ify=3y = 3 meets the tangents drawn at the vertices of the ellipse at point P and Q, then PQ subtends a right angle at any of its foci. Here O denotes the focus of given ellipse.

Now we use the relation m1m2=1{m_1}{m_2} = - 1to prove that line OP and OQ subtend right angle at its focus. Here m1{m_1}is the slope of OP and m2{m_2} is the slope of OQ.
Here, in this figure x1=1+3,y1=2,x2=1,y2=3,x3=3,y3=3{x_1} = 1 + \sqrt 3 \,,\,{y_1} = 2\,\,,\,{x_2} = - 1,\,\,{y_2} = 3\,,\,{x_3} = 3\,,\,{y_3} = 3\,\,
\Rightarrow m1=y2y1x2x1{m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} and m2=y3y1x3x1{m_2} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}}

\Rightarrow m1=321(1+3){m_1} = \dfrac{{3 - 2}}{{ - 1 - \left( {1 + \sqrt 3 } \right)}} and m2=323(1+3){m_2} = \dfrac{{3 - 2}}{{3 - \left( {1 + \sqrt 3 } \right)}}
\Rightarrow m1=123{m_1} = \dfrac{1}{{ - 2 - \sqrt 3 }} and m2=123{m_2} = \dfrac{1}{{2 - \sqrt 3 }}
\Rightarrow m1=1(2+3){m_1} = \dfrac{1}{{ - \left( {2 + \sqrt 3 } \right)}}and m2=123{m_2} = \dfrac{1}{{2 - \sqrt 3 }}
Now, we will multiply both the terms
m1m2=123×1(2+3){m_1}{m_2} = \dfrac{1}{{2 - \sqrt 3 }} \times \dfrac{{ - 1}}{{\left( {2 + \sqrt 3 } \right)}}
m1m2=1(2)2(3)2\Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{{{{\left( 2 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}
m1m2=143\Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{{4 - 3}}
m1m2=11\Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{1}
m1m2=1\Rightarrow {m_1}{m_2} = - 1
Therefore, OP and OQ subtend the right angle at the focus.
Hence, option A, C and D are correct.

Therefore, the correct option is A, C and D

Note: All ellipses have two focal points, or foci. The sum of the distances from every point on the ellipse to the two foci is a constant. All ellipses have a centre and a major and minor axis. All ellipses have eccentricity values greater than or equal to zero, and less than one.