Solveeit Logo

Question

Question: Which of the following is an even function...

Which of the following is an even function

A

f(x)=ax+1ax1f(x) = \frac{a^{x} + 1}{a^{x} - 1}

B

f(x)=x(ax1ax+1)f(x) = x\left( \frac{a^{x} - 1}{a^{x} + 1} \right)

C

f(x)=axaxax+axf(x) = \frac{a^{x} - a^{- x}}{a^{x} + a^{- x}}

D

f(x)=sinxf(x) = \sin x

Answer

f(x)=x(ax1ax+1)f(x) = x\left( \frac{a^{x} - 1}{a^{x} + 1} \right)

Explanation

Solution

In option (1), f(x)=ax+1ax1=1+ax1ax=ax+1ax1=f(x)f( - x) = \frac{a^{- x} + 1}{a^{- x} - 1} = \frac{1 + a^{x}}{1 - a^{x}} = - \frac{a^{x} + 1}{a^{x} - 1} = - f(x)

So, It is an odd function.

In option (2),

f(x)=(x)ax1ax+1=x(1ax)1+ax=x(ax1)(ax+1)=f(x)f( - x) = ( - x)\frac{a^{- x} - 1}{a^{- x} + 1} = - x\frac{(1 - a^{x})}{1 + a^{x}} = x\frac{(a^{x} - 1)}{(a^{x} + 1)} = f(x) So, It is an even function.

In option (3), f(x)=axaxax+ax=f(x)f( - x) = \frac{a^{- x} - a^{x}}{a^{- x} + a^{x}} = - f(x) So, It is an odd function.

In option (4), f(x)=sin(x)=sinx=f(x)f( - x) = \sin( - x) = - \sin x = - f(x) So, It is an odd function.