Solveeit Logo

Question

Mathematics Question on Application of derivatives

Which of the following is a tangent to the curve given by x3+y3=2xy?{{x}^{3}}+{{y}^{3}}=2xy?

A

y=xy=x

B

y=x+2y=x+2

C

y=x+2y=-x+2

D

y=x+3y=-x+3

Answer

y=xy=x

Explanation

Solution

Given curves is x3+y3=2xy{{x}^{3}}+{{y}^{3}}=2xy ..(i)
If a line is a tangent of given curve, then it will touch at only one point.
For y=xy=x to be a tangent,
x3+x3=2x×x2x3=2x2{{x}^{3}}+{{x}^{3}}=2x\times x\Rightarrow 2{{x}^{3}}=2{{x}^{2}}
\Rightarrow x=1x=1 On putting the value of x in given curve (i), we get (1)3+y3=2×1×y{{(1)}^{3}}+{{y}^{3}}=2\times 1\times y
\Rightarrow 1+y3=2y1+{{y}^{3}}=2y
\Rightarrow y32y+1=0{{y}^{3}}-2y+1=0
\Rightarrow y3y2+y22y+1=0{{y}^{3}}-{{y}^{2}}+{{y}^{2}}-2y+1=0
\Rightarrow y2(y1)+y2y+y2y+1=0{{y}^{2}}(y-1)+{{y}^{2}}-y+y-2y+1=0
\Rightarrow y2(y1)+y(y1)y+1=0{{y}^{2}}(y-1)+y(y-1)-y+1=0
\Rightarrow y2(y1)+y(y1)1(y1)=0{{y}^{2}}(y-1)+y(y-1)-1(y-1)=0
\Rightarrow (y1)(y2+y1)=0(y-1)({{y}^{2}}+y-1)=0
\Rightarrow y1=0y-1=0 or y2+y1=0{{y}^{2}}+y-1=0
\Rightarrow y=1y=1 or y=1±14×1×(1)2y=\frac{-1\pm \sqrt{1-4\times 1\times (-1)}}{2}
\Rightarrow y=1y=1 or y=1±52y=\frac{-1\pm \sqrt{5}}{2} [not integral value] So, (x,y)=(1,1)(x,\,\,\,y)\,\,=\,\,\,(1,\,\,1)
Then, y=xy=x will be the tangent to the given curve.