Solveeit Logo

Question

Mathematics Question on Differential equations

Which of the following is a homogeneous differential equation?

A

(4x + 6y + 5) dy - (3y + 2x + 4) dx = 0

B

xydx(x3+y3)dy=0xy \, dx - (x^3 + y^3) dy = 0

C

(x3+2y2)dx+2xydy=0(x^3 + 2y^2) dx + 2xy dy = 0

D

y2dx+(x2xyy2)dyy^2 dx + (x^2 - xy - y^2) dy

Answer

y2dx+(x2xyy2)dyy^2 dx + (x^2 - xy - y^2) dy

Explanation

Solution

Consider the differential equation y2dx+(x2xyy2)dy=0y^2 dx + (x^2 - xy - y^2) dy = 0 dydx=y2x2xyy2=y2x2+xyx2\therefore \frac{dy}{dx} = - \frac{y^{2}}{x^{2} -xy -y^{2}} = \frac{y^{2}}{x^{2} +xy -x^{2}} =f(x,y)f(x,y)=y2x2+xyx2= f\left(x,y\right) \Rightarrow f\left(x,y\right) = \frac{y^{2}}{x^{2} + xy - x^{2}} Replacing x by λx\lambda x and yy by λyf(λx,λy)\lambda y \, f(\lambda x , \lambda y) =(λy)2(λx)2+(λx)(λy)(λx)2= \frac{\left(\lambda y\right)^{2}}{\left(\lambda x\right)^{2} +\left(\lambda x\right)\left(\lambda y\right) - \left(\lambda x\right)^{2}} =λ0λ2y2λ2y2+λ2xyλ2x2= \lambda^{0} \frac{\lambda^{2}y^{2}}{\lambda^{2}y^{2} + \lambda^{2} xy - \lambda^{2}x^{2}} =λ0(y2y2+xyx2)= \lambda^{0} \left(\frac{y^{2} }{y^{2} + xy-x^{2}}\right) =λ0f(x,y)= \lambda^{0} f\left(x,y\right) \therefore f(x, y) is the homogeneous function of degree zero.