Solveeit Logo

Question

Mathematics Question on Differential equations

Which of the following is a correct solution of xcosx(dydx)+y(xsinx+cosx)=1?x\,cosx\,\left(\frac{dy}{dx}\right) + y(x sin x +cos x) = 1 ?

A

yxsecy=C+tanxyx\, sec\, y\, =\, C \, + tan x

B

yxcosy=C+tanxy\,x cos\, y = C + tan x

C

yxsecx=C+tanxy x \,sec \, x \,= \,C \,+ tan x

D

NoneoftheseNone\, of \, these

Answer

yxsecx=C+tanxy x \,sec \, x \,= \,C \,+ tan x

Explanation

Solution

Given, xcosx(dydx)+y(xsinx+cosx)=1x\, cos\, x \left(\frac{dy}{dx}\right)+y \left(x\,sin\,x+cos\,x\right)=1
dydx+y(xsinx+cosx)xcosx\Rightarrow \frac{dy}{dx}+\frac{y \left(x\,sin\,x+cos\,x\right)}{x\, cos\,x}
=1xcosx=\frac{1}{x\, cos\,x}
On comparing with dydx+py=Q\frac{dy}{dx}+py=Q, we get
P=xsinx+cosxxcosxP=\frac{x\,sin\,x+cos\,x}{x\,cos\,x}
=tanx+1x=tan\,x+\frac{1}{x}
IF=epdx\therefore IF=e^{\int p\,dx }
=e(tanx+1x)dx=e^{\int\left(tan\,x+\frac{1}{x}\right)dx}
=elogsecx+logx=e^{log\,sec\,x+log\,x}
=elogxsecx=xsecx=e^{log\,x\,sec\,x}=x\,sec\,x
\therefore Solution is
y×xsecx=xsecxxcosxdxy\times x\,sec\,x=\int \frac{x\,sec\,x}{x\,cos\,x} dx
=sec2xdx=\int sec^{2}x\,dx
xysecx=tanx+c\Rightarrow xy\, sec\, x =tan\, x+c