Solveeit Logo

Question

Question: Which of the following has the greatest number of atoms? A. \({\text{1}}\,{\text{g}}\) of butan...

Which of the following has the greatest number of atoms?

A. 1g{\text{1}}\,{\text{g}} of butane (C4H10)\left( {{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}} \right)
B. 1g{\text{1}}\,{\text{g}} of nitrogen (N2)\left( {{{\text{N}}_2}} \right)
C. 1g{\text{1}}\,{\text{g}} of silver (Ag)\left( {{\text{Ag}}} \right)
D. 1g{\text{1}}\,{\text{g}} of water (H2O)\left( {{{\text{H}}_2}{\text{O}}} \right)

Explanation

Solution

According to the Avogadro, one mole of any substance have 6.02×1023\,6.02 \times {10^{23}} atoms, ions, or molecules. This number 6.02×1023\,6.02 \times {10^{23}} is known as Avogadro number. The total number of atoms can be determined by multiplying the moles of a substance with Avogadro number.

Step by step answer: The number of moles in a substance is determined by using the mole formula which is as follows:

Determine the mole in 1g{\text{1}}\,{\text{g}} of butane as follows:
Substitute 1g{\text{1}}\,{\text{g}} for mass and 58g/mol58\,{\text{g/mol}} for molar mass.
moleof C4H10 = 1 g58 g/mol{\text{mole}}\,\,{\text{of }}{{\text{C}}_4}{{\text{H}}_{10}}{\text{ = }}\,\dfrac{{{\text{1 g}}}}{{{\text{58 g/mol}}}}
moleof C4H10 = 0.017mol{\text{mole}}\,\,{\text{of }}{{\text{C}}_4}{{\text{H}}_{10}}{\text{ = }}\,{\text{0}}{\text{.017}}\,{\text{mol}}

Multiply the mole of butane with Avogadro number to determine the total number of molecules.

Moleculesof C4H10 = 0.017mol×6.02×1023molecules/mol{\text{Molecules}}\,{\text{of }}{{\text{C}}_4}{{\text{H}}_{10}}{\text{ = }}\,{\text{0}}{\text{.017}}\,{\text{mol}} \times {\text{6}}{\text{.02}} \times {\text{1}}{{\text{0}}^{23}}{\text{molecules/mol}}
Moleculesof C4H10 = 1.04×1022{\text{Molecules}}\,\,{\text{of }}{{\text{C}}_4}{{\text{H}}_{10}}{\text{ = }}\,1.04 \times {\text{1}}{{\text{0}}^{22}}
So, the number of molecules in 1g{\text{1}}\,{\text{g}}of butane is 1.04×10221.04 \times {\text{1}}{{\text{0}}^{22}}.
One molecule of butane has 1414atoms. So, the total number atoms are as follows:
1.04×1022×141.04 \times {\text{1}}{{\text{0}}^{22}} \times {\text{1}}4
14.6×1022atoms14.6 \times {\text{1}}{{\text{0}}^{22}}{\text{atoms}}
So, the number of atoms in 1g{\text{1}}\,{\text{g}} of butane is14.6×102214.6 \times {\text{1}}{{\text{0}}^{22}}.

Determine the mole in 1g{\text{1}}\,{\text{g}} of nitrogen as follows:

Substitute 1g{\text{1}}\,{\text{g}} for mass and 14g/mol14\,{\text{g/mol}} for molar mass.
moleof N2 = 1 g14 g/mol{\text{mole}}\,\,{\text{of }}{{\text{N}}_2}{\text{ = }}\,\dfrac{{{\text{1 g}}}}{{{\text{14 g/mol}}}}
moleof N2 = 0.071mol{\text{mole}}\,\,{\text{of }}{{\text{N}}_2}{\text{ = }}\,{\text{0}}{\text{.071}}\,{\text{mol}}

Multiply the mole of nitrogen with Avogadro number to determine the total number of molecules.

moleculesof N2 = 0.071mol×6.02×1023molecules/mol{\text{molecules}}\,\,{\text{of }}{{\text{N}}_2}{\text{ = }}\,{\text{0}}{\text{.071}}\,{\text{mol}} \times {\text{6}}{\text{.02}} \times {\text{1}}{{\text{0}}^{23}}{\text{molecules/mol}}
moleculesof N2 = 4.3×1022{\text{molecules}}\,\,{\text{of }}{{\text{N}}_2}{\text{ = }}\,4.{\text{3}} \times {\text{1}}{{\text{0}}^{22}}

So, the number of molecules in 1g{\text{1}}\,{\text{g}} of nitrogen is 4.3×10224.3 \times {\text{1}}{{\text{0}}^{22}}.

One molecule of nitrogen has 22atoms.
=4.3×1022×2= 4.3 \times {\text{1}}{{\text{0}}^{22}} \times 2
=8.6×1022= 8.6 \times {\text{1}}{{\text{0}}^{22}}
So, the number of atoms in 1g{\text{1}}\,{\text{g}} of nitrogen is 8.6×10228.6 \times {\text{1}}{{\text{0}}^{22}}.
Determine the mole in 1g{\text{1}}\,{\text{g}} of silver as follows:
Substitute 1g{\text{1}}\,{\text{g}} for mass and 108g/mol108\,{\text{g/mol}} for molar mass.
moleof Ag = 1 g108g/mol{\text{mole}}\,\,{\text{of Ag}}\,{\text{ = }}\,\,\dfrac{{{\text{1 g}}}}{{108\,{\text{g/mol}}}}
moleof Ag = 9.259×103mol{\text{mole}}\,\,{\text{of Ag}}\,{\text{ = }}\,\,{\text{9}}{\text{.259}} \times {\text{1}}{{\text{0}}^{ - 3}}\,{\text{mol}}
Multiply the mole of silver with Avogadro number to determine the total number of molecules.
moleculesof Ag = 9.259×103mol×6.02×1023molecules/mol{\text{molecules}}\,\,{\text{of Ag}}\,{\text{ = }}\,\,{\text{9}}{\text{.259}} \times {\text{1}}{{\text{0}}^{ - 3}}\,{\text{mol}} \times {\text{6}}{\text{.02}} \times {\text{1}}{{\text{0}}^{23}}{\text{molecules/mol}}
moleculesof Ag = 0.55×1022{\text{molecules}}\,{\text{of Ag}}\,{\text{ = }}\,\,0.55 \times {\text{1}}{{\text{0}}^{22}}
One molecule of silver has one atom.
Atomsof Ag = 1×0.55×1022{\text{Atoms}}\,{\text{of Ag}}\,{\text{ = }}\,\,1\, \times 0.55 \times {\text{1}}{{\text{0}}^{22}}
Atomsof Ag = 0.55×1022{\text{Atoms}}\,{\text{of Ag}}\,{\text{ = }}\,0.55 \times {\text{1}}{{\text{0}}^{22}}
So, the number of atoms in 1g{\text{1}}\,{\text{g}} of silver is 0.55×10220.55 \times {\text{1}}{{\text{0}}^{22}}.
Determine the mole in 1g{\text{1}}\,{\text{g}} of water as follows:
Substitute 1g{\text{1}}\,{\text{g}} for mass and 18g/mol18\,{\text{g/mol}} for molar mass.
moleof H2O = 1 g18g/mol{\text{mole}}\,\,{\text{of }}{{\text{H}}_2}{\text{O}}\,{\text{ = }}\,\,\dfrac{{{\text{1 g}}}}{{18\,{\text{g/mol}}}}
moleof H2O = 0.055mol{\text{mole}}\,\,{\text{of }}{{\text{H}}_2}{\text{O}}\,{\text{ = }}\,\,0.055\,{\text{mol}}
Multiply the mole of water with Avogadro number to determine the total number of molecules.
moleculesof H2O = 0.055mol×6.02×1023molecules/mol{\text{molecules}}\,\,{\text{of }}{{\text{H}}_2}{\text{O}}\,{\text{ = }}\,\,0.055\,{\text{mol}} \times {\text{6}}{\text{.02}} \times {\text{1}}{{\text{0}}^{23}}{\text{molecules/mol}}
moleculesof H2O = 3.3×1022{\text{molecules}}\,\,{\text{of }}{{\text{H}}_2}{\text{O}}\,\,{\text{ = }}\,\,3.3 \times {\text{1}}{{\text{0}}^{22}}
So, the number of molecules in 1g{\text{1}}\,{\text{g}} of water is 3.3×10223.3 \times {\text{1}}{{\text{0}}^{22}}.
One molecule of water has 33atoms.
No. of atoms =3×3.3×1022 = 3 \times 3.3 \times {\text{1}}{{\text{0}}^{22}}
No. of atoms =9.9×1022atoms = 9.9 \times {\text{1}}{{\text{0}}^{22}}{\text{atoms}}
So, the number of atoms in 1g{\text{1}}\,{\text{g}} of water is9.9×10229.9 \times {\text{1}}{{\text{0}}^{22}}.
1g{\text{1}}\,{\text{g}} of butane has the highest number of moles so, option (B), (C), (D) are incorrect.
Therefore, option (A) 1g{\text{1}}\,{\text{g}} of butane(C4H10)\left( {{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}} \right), is correct.

Note: Atomicity also denotes the number of atoms in a substance. Here, the gram amount of each substance is given so, the total number of atoms is determined by multiplying the moles with Avogadro's number and number of atoms in one molecule. If the gram amount is not given the total number of atoms can be determined by adding the number of atoms of a substance.