Solveeit Logo

Question

Physics Question on Oscillations

Which of the following functions represents a simple harmonic oscillation?

A

sinωtcosωt\sin \omega t -\cos \omega t

B

sin2ωt\sin^2 \omega t

C

sinωt+sin2ωt\sin \omega t+\sin 2 \omega t

D

sinωtsin2ωt\sin \omega t - \sin 2 \omega t

Answer

sinωtcosωt\sin \omega t -\cos \omega t

Explanation

Solution

One of the conditions for SHM is that restoring force (F)(F) and hence acceleration (a)(a) should be proportional to displacement (y)(y). Let, y=sinωtcosωty =\sin \omega t-\cos \omega t dydt=ωcosωt+ωsinωt\frac{d y}{d t} =\omega \cos \omega t+\omega \sin \omega t d2ydt2=ω2sinωt+ω2cosωt\frac{d^{2} y}{d t^{2}} =-\omega^{2} \sin \omega t+\omega^{2} \cos \omega t or a=ω2(sinωtcosωt)a =-\omega^{2}(\sin \omega t-\cos \omega t) a=ω2yaya=-\omega^{2} y \Rightarrow a \propto-y This satisfies the condition of SHM. Other equations do not satisfy this condition.