Solveeit Logo

Question

Mathematics Question on Sequences and Series of real numbers

Which of the following functions represents a cumulative distribution function?

A

F1(x)={0,if x<π4sinx,if π4x<3π4\1,if x3π4F_1(x) = \begin{cases} 0, & \text{if } x < \frac{\pi}{4} \\\\\sin x, & \text{if } \frac{\pi}{4} \leq x < \frac{3\pi}{4} \\\1, & \text{if } x \geq \frac{3\pi}{4} \end{cases}

B

F2(x)={0,if x<0\2sinx,if 0x<π4\1,if xπ4F_2(x) = \begin{cases} 0, & \text{if } x < 0 \\\2 \sin x, & \text{if } 0 \leq x < \frac{\pi}{4} \\\1, & \text{if } x \geq \frac{\pi}{4} \end{cases}

C

F3(x)={0,if x<0\x,if 0xlt;1313x+13,if 13x<12\1,if x12F_3(x) = \begin{cases} 0, & \text{if } x < 0 \\\x, & \text{if } 0 \leq x lt; \frac{1}{3} \\\\\frac{1}{3} x + \frac{1}{3}, & \text{if } \frac{1}{3} \leq x < \frac{1}{2} \\\1, & \text{if } x \geq \frac{1}{2} \end{cases}

D

F4(x)={0,if x<02sinx,if 0x<π4\1,if xπ4F_4(x) = \begin{cases} 0, & \text{if } x < 0 \\\\\sqrt{2} \sin x, & \text{if } 0 \leq x < \frac{\pi}{4} \\\1, & \text{if } x \geq \frac{\pi}{4} \end{cases}

Answer

F4(x)={0,if x<02sinx,if 0x<π4\1,if xπ4F_4(x) = \begin{cases} 0, & \text{if } x < 0 \\\\\sqrt{2} \sin x, & \text{if } 0 \leq x < \frac{\pi}{4} \\\1, & \text{if } x \geq \frac{\pi}{4} \end{cases}

Explanation

Solution

The correct option is (D): F4(x)={0,if x<02sinx,if 0x<π4\1,if xπ4F_4(x) = \begin{cases} 0, & \text{if } x < 0 \\\\\sqrt{2} \sin x, & \text{if } 0 \leq x < \frac{\pi}{4} \\\1, & \text{if } x \geq \frac{\pi}{4} \end{cases}