Solveeit Logo

Question

Physics Question on simple harmonic motion

Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant):

(a) sin ωt – cos ωt

(b) sin3 ωt

(c) 3 cos (π4\frac{π}{4} – 2ωt)

(d) cos ωt + cos 3ωt + cos 5ωt

(e) exp (–ω 2 t 2 )

(f) 1+ωt+ω2 t2

Answer

SHM

The given function is:

sinωtcosωtsin\, ωt-cos \,ωt

=2[12sinωt12cosωt]=\sqrt{2}[\frac{1}{\sqrt2}sin\,ωt-\frac{1}{\sqrt2}cos\,ωt]

=2[sinωt×cosπ4cosωt×sinπ4]=\sqrt2[sin\,ωt×cos\frac{\pi}{4}-cos\,ωt×sin\frac{\pi}{4}]

=2sin(ωtπ4)=\sqrt2\,sin\,(ωt-\frac{\pi}{4})

This function represents SHM as it can be written in the form: a sin (ωt+ϕ)

Its period is: 2πω\frac{2\pi}{ω}

Periodic, but not SHM

The given function is:

sin3ωtsin^3 ωt

=12[3.sinsin3ωtsin3sin3ωt]=\frac{1}{2}[3\\.sin\,sin^3 ωt-sin\,3 \,sin^3 ωt]

The terms sin ωt and sin ωt individually represent simple harmonic motion (SHM).

However, the superposition of two SHM is periodic and not simple harmonic.

**SHM **

The given function is:

=3cos[π42ωt]=3\,cos[\frac{\pi}{4}-2ωt]

=3cos[2ωtπ4]=3\,cos[2ωt-\frac{\pi}{4}]

This function represents simple harmonic motion because it can be written in the form: a (ωt+ϕ)

a cos (ωt+ϕ)

Its period is: 2π2ω=πω\frac{2\pi}{2ω}=\frac{\pi}{ω}

Periodic, but not SHM

The given function is cos ω+cos 3ωt+ cos 5ωt. Each individual cosine function represents SHM.

However, the superposition of three simple harmonic motions is periodic, but not simple harmonic.

Non-periodic motion

The given function exp(- ω2 t2) is an exponential function. Exponential functions do not repeat themselves.

Therefore, it is a non-periodic motion.

The given function 1+ωt+ω2 t 2 is non-periodic.