Solveeit Logo

Question

Question: Which of the following function(s) not defined at $x = 0$ has/have removal discontinuity at $x = 0$ ...

Which of the following function(s) not defined at x=0x = 0 has/have removal discontinuity at x=0x = 0 ?

A

f(x)=11+2cotxf(x) = \frac{1}{1+2^{\cot x}}

B

f(x)=cos(sinxx)f(x) = \cos (\frac{|\sin x|}{x})

C

f(x)=xsinπxf(x) = x \sin \frac{\pi}{x}

D

f(x)=1lnxf(x) = \frac{1}{\ln|x|}

Answer

f(x) = cos(sinxx\cos (\frac{|\sin x|}{x}), f(x) = xsinπxx \sin \frac{\pi}{x}, f(x) = 1lnx\frac{1}{\ln|x|}

Explanation

Solution

A function f(x)f(x) has a removable discontinuity at x=ax=a if limxaf(x)\lim_{x\to a} f(x) exists and is finite, but is not equal to f(a)f(a) (or f(a)f(a) is undefined). Since the problem states the functions are not defined at x=0x=0, we only need to check if the limit limx0f(x)\lim_{x\to 0} f(x) exists and is finite. This requires the left-hand limit (LHL) and the right-hand limit (RHL) at x=0x=0 to be equal and finite.

  1. f(x)=11+2cotxf(x) = \frac{1}{1+2^{\cot x}}

    • LHL: As x0x \to 0^-, cotx\cot x \to -\infty. limx0f(x)=11+2=11+0=1\lim_{x\to 0^-} f(x) = \frac{1}{1+2^{-\infty}} = \frac{1}{1+0} = 1.
    • RHL: As x0+x \to 0^+, cotx+\cot x \to +\infty. limx0+f(x)=11+2=11+=0\lim_{x\to 0^+} f(x) = \frac{1}{1+2^{\infty}} = \frac{1}{1+\infty} = 0.
    • LHL \neq RHL. This is a non-removable discontinuity.
  2. f(x)=cos(sinxx)f(x) = \cos \left(\frac{|\sin x|}{x}\right)

    • LHL: As x0x \to 0^-, sinxx=sinxx1\frac{|\sin x|}{x} = \frac{-\sin x}{x} \to -1. limx0f(x)=cos(1)=cos(1)\lim_{x\to 0^-} f(x) = \cos(-1) = \cos(1).
    • RHL: As x0+x \to 0^+, sinxx=sinxx1\frac{|\sin x|}{x} = \frac{\sin x}{x} \to 1. limx0+f(x)=cos(1)\lim_{x\to 0^+} f(x) = \cos(1).
    • LHL = RHL = cos(1)\cos(1). The limit exists and is finite. This is a removable discontinuity.
  3. f(x)=xsinπxf(x) = x \sin \frac{\pi}{x}

    • LHL: As x0x \to 0^-, x0x \to 0 and sinπx\sin \frac{\pi}{x} is bounded between -1 and 1. By the Squeeze Theorem, limx0xsinπx=0\lim_{x\to 0^-} x \sin \frac{\pi}{x} = 0.
    • RHL: As x0+x \to 0^+, x0x \to 0 and sinπx\sin \frac{\pi}{x} is bounded between -1 and 1. By the Squeeze Theorem, limx0+xsinπx=0\lim_{x\to 0^+} x \sin \frac{\pi}{x} = 0.
    • LHL = RHL = 0. The limit exists and is finite. This is a removable discontinuity.
  4. f(x)=1lnxf(x) = \frac{1}{\ln|x|}

    • LHL: As x0x \to 0^-, x0+|x| \to 0^+, so lnx\ln|x| \to -\infty. limx0f(x)=1=0\lim_{x\to 0^-} f(x) = \frac{1}{-\infty} = 0.
    • RHL: As x0+x \to 0^+, x0+|x| \to 0^+, so lnx\ln|x| \to -\infty. limx0+f(x)=1=0\lim_{x\to 0^+} f(x) = \frac{1}{-\infty} = 0.
    • LHL = RHL = 0. The limit exists and is finite. This is a removable discontinuity.

The functions with removable discontinuities at x=0x=0 are cos(sinxx)\cos \left(\frac{|\sin x|}{x}\right), xsinπxx \sin \frac{\pi}{x}, and 1lnx\frac{1}{\ln|x|}.