Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Which of the following functions is differentiable at x=0x = 0 ?

A

cos(x)+x\cos(|x|) + |x|

B

cos(x)x\cos(|x|) - |x|

C

sin(x)+x\sin(|x|) + |x|

D

sin(x)x\sin(|x|) - |x|

Answer

sin(x)x\sin(|x|) - |x|

Explanation

Solution

Let f(x)=sin(x)xf(x) = \sin(|x|) - |x|
f(x)={sinxx,x>0 \-sinx+x,x>0\Rightarrow f\left(x\right) = \begin{cases} \sin \: x - x, x > 0 \\\ \- \sin \: x + x, x > 0 \end{cases}
f(x)={cos1x,x0 \-cosx+1,x>0\Rightarrow f'\left(x\right) = \begin{cases} \cos\: 1 - x, x \geq 0 \\\ \- \cos\: x + 1, x > 0 \end{cases}
\therefore L.H.D = limx0(cosx+1)=1+1=0\lim_{x\to0^{-}}\left(-\cos x+1\right) = -1+1=0
R.H.D = limx0+(cosx1)=11=0\lim_{x\to0^{+}}\left(\cos x - 1\right) = -1 - 1=0
\because L.H.D = R.H.D
f(x)\therefore \:\:\: f(x) is differentiable at x=0x = 0