Solveeit Logo

Question

Question: Which of the following functions is differentiable at x = 0?...

Which of the following functions is differentiable at x = 0?

A

cos (|x|) + |x|

B

cos (|x|) − |x|

C

sin (|x|) + |x|

D

sin (|x|) − |x|

Answer

sin (|x|) − |x|

Explanation

Solution

(1) f(x) = cos |x| + |x| = {cosxx,x<0cosx+x,x0 \left\{ \begin{matrix} \cos x - x, & x < 0 \\ \cos x + x, & x \geq 0 \end{matrix} \right.\

f’(x) = $\left{ \begin{matrix}

  • \sin x - 1, & x < 0 \
  • \sin x + 1, & x \geq 0 \end{matrix} \right.\ \begin{matrix} Atx = 0 \ LD = - 1 \ RD = 1 \end{matrix}$

∴ Not differentiable

(2) f(x) cos |x| − |x| = {cosx+x,x<0cosxx,x0 \left\{ \begin{matrix} \cos x + x, & x < 0 \\ \cos x - x, & x \geq 0 \end{matrix} \right.\

Not differentiable at x = 0

(3) f(x) sin |x| + |x| = $\left{ \begin{matrix}

  • \sin x - x, & x < 0 \
  • \sin x + x, & x \geq 0 \end{matrix} \right.\ $

Not differentiable at x = 0

(4) f(x) = sin|x| −|x| = $\left{ \begin{matrix}

  • \sin x + x, & x < 0 \ \sin x - x, & x \geq 0 \end{matrix} \right.\ $

f’(x) = $\left{ \begin{matrix}

  • \cos x + 1, & x < 0 \
  • \cos x - 1, & x \geq 0 \end{matrix} \right.\ \begin{matrix} Atx = 0 \ LD = 0 \ RD = 0 \end{matrix}$

∴ f is differentiable at x = 0.

∴ D is correct alternative.