Question
Question: Which of the following functions is differentiable at x = 0?...
Which of the following functions is differentiable at x = 0?
A
cos (|x|) + |x|
B
cos (|x|) − |x|
C
sin (|x|) + |x|
D
sin (|x|) − |x|
Answer
sin (|x|) − |x|
Explanation
Solution
(1) f(x) = cos |x| + |x| = {cosx−x,cosx+x,x<0x≥0
f’(x) = $\left{ \begin{matrix}
- \sin x - 1, & x < 0 \
- \sin x + 1, & x \geq 0 \end{matrix} \right.\ \begin{matrix} Atx = 0 \ LD = - 1 \ RD = 1 \end{matrix}$
∴ Not differentiable
(2) f(x) cos |x| − |x| = {cosx+x,cosx−x,x<0x≥0
Not differentiable at x = 0
(3) f(x) sin |x| + |x| = $\left{ \begin{matrix}
- \sin x - x, & x < 0 \
- \sin x + x, & x \geq 0 \end{matrix} \right.\ $
Not differentiable at x = 0
(4) f(x) = sin|x| −|x| = $\left{ \begin{matrix}
- \sin x + x, & x < 0 \ \sin x - x, & x \geq 0 \end{matrix} \right.\ $
f’(x) = $\left{ \begin{matrix}
- \cos x + 1, & x < 0 \
- \cos x - 1, & x \geq 0 \end{matrix} \right.\ \begin{matrix} Atx = 0 \ LD = 0 \ RD = 0 \end{matrix}$
∴ f is differentiable at x = 0.
∴ D is correct alternative.