Solveeit Logo

Question

Physics Question on Electromagnetic waves

Which of the following functions does not represent a stationary wave ? Here a,ba, b and care constants.

A

y=acosbxsincty=a \cos b x \sin c t

B

y=asinbxcoscty=a \sin b x \cos c t

C

y=asin(bx+ct)y=a \sin (b x +c t)

D

y=asin(bx+ct)+asin(bxct)y=a \sin (b x+ c t)+a \sin (b x -c t)

Answer

y=asin(bx+ct)y=a \sin (b x +c t)

Explanation

Solution

Two superimposing waves are incident wave
y1=asin(ωtkx)y_{1}=a \sin (\omega t-k x) and reflected wave
y2=asin(ωt+kx)y_{2}=a \sin (\omega t +k x)
Then by principle of superposition
y=y1+y2y =y_{1}+y_{2}
=a[sin(ωtkx)+sinωt+kx)]=a[\sin (\omega t-k x)+\sin \omega t+ k x)]
y=2acoskxsinωt\Rightarrow y=2 a \cos k x \sin \omega t
Therefore, option (c) doesnot represent a stationary wave.