Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Which of the following functions are strictly decreasing on (0,π/2)?

A

cos x

B

cos 2x

C

cos 3x

D

tan x

Answer

cos x

Explanation

Solution

(A) Let f1(x) = cos x.

=f1(x) = -sin x

In interval (0,π2\frac \pi2), f'1(x) = -sin x<0.

    \impliesf1(x) = cos x is strictly decreasing in interval (0,π2\frac \pi2).

(B) Let f2(x) = cos2x.

f'2(x) = -2sin 2x

Now 0<x<π2\frac \pi2     \implies 0<2x<π     \implies sin 2x>0     \implies -2 sin 2x<0

f'1(x) = -2sin 2x < 0 on (0,π2\frac \pi2)

    \impliesf'2(x) = cos 2x is strictly decreasing in interval (0,π2\frac \pi2).

(C) Let f3(x) = cos3x.

f'3(x) = -sin3x

Now, f'3(x) = 0

    \impliessin3x=0    \implies3x=π, as x ε (0,π2\frac \pi2)

    \impliesx = π2\frac \pi2

The point x=π3\frac \pi3 divides the interval (0,π2\frac \pi2) into two disjoint intervals

i.e., 0 (0,π3\frac \pi3) and (π3\frac \pi3,π2\frac \pi2).

Now, in interval(0,π3\frac \pi3), f3(x) =-3 sin3x<0 [as 0<x<π3\frac \pi3=0<3x<π\pi].

∴ f3 is strictly decreasing in interval (0,π3\frac \pi3)

However, in interval (π3\frac \pi3,π2\frac \pi2), f3(x)=-3sin 3x>0 [as π3\frac \pi3<x<\frac \pi2$$\impliesπ<3x<3π2\frac {3\pi}{2}]

∴ f3 is strictly increasing in interval (π3\frac \pi3,π2\frac \pi2).

Hence, f3 is neither increasing nor decreasing in interval (0,π2\frac \pi2)

(D) Let f4(x) = tan x.

    \impliesf4(x) = sec2 x

In interval (0,π2\frac \pi2), f'4(x) = sec2x>0.

f4 is strictly increasing in interval (0,π2\frac \pi2).

Therefore, functions cos x and cos 2x are strictly decreasing in (0,π2\frac \pi2).

Hence, the correct answers are (A) and (B).