Solveeit Logo

Question

Question: Which of the following function is discontinuous at x = 0, if f(0) = 1 $f(x) = \frac{sin(sin^2x)}{(...

Which of the following function is discontinuous at x = 0, if f(0) = 1

f(x)=sin(sin2x)(esinx1)x2f(x) = \frac{sin(sin^2x)}{(e^{|sinx|}-1)\sqrt{x^2}}; (x\neq0)

f(x)=(1+x)(sgn(x))+x2f(x) = (1+x)(sgn(x)) +x²; (x\neq0) (where sgn(x) is signum function)

f(x)=(In(1+tan2x))(cosec((e\*1)2));(xf(x) = (In(1 + tan²x)) (cosec((e\*-1)²)); (x\neq$ 0)

f(x)=(1+sin2x)cosecx;(xf(x) = (1 + sin²x) cosecx; (x\neq$0)

A

f(x) = sin(sin2x)(esinx1)x2\frac{sin(sin^2x)}{(e^{|sinx|}-1)\sqrt{x^2}}; (x\neq0)

B

f(x) = (1+x)(sgn(x)) +x²; (x\neq0) (where sgn(x) is signum function)

C

f(x) = (In(1 + tan²x)) (cosec((e*-1)²)); (x\neq 0)

D

f(x) = (1 + sin²x) cosecx; (x\neq0)

Answer

Options 2, 3, and 4 are discontinuous at x = 0.

Explanation

Solution

Option 1:
For small xx,
sin(sin2x)x2\sin(\sin^2x) \approx x^2.
Also, esinx1xe^{|\sin x|}-1 \approx |x| and x2=x\sqrt{x^2} = |x|.
Hence,

f(x)x2xx=x2x2=1.f(x) \approx \frac{x^2}{|x|\cdot|x|} = \frac{x^2}{x^2} = 1.

So limx0f(x)=1=f(0)\lim_{x\to0} f(x) = 1 = f(0) (Continuous).

Option 2:
f(x)=(1+x)sgn(x)+x2f(x)=(1+x)\operatorname{sgn}(x)+x^2.

  • For x>0x>0: sgn(x)=1\operatorname{sgn}(x)=1, so f(x)=1+x+x2f(x)=1+x+x^2 with limx0+f(x)=1\lim_{x\to0^+} f(x)=1.
  • For x<0x<0: sgn(x)=1\operatorname{sgn}(x)=-1, so f(x)=1x+x2f(x)=-1-x+x^2 with limx0f(x)=1\lim_{x\to0^-} f(x) = -1.
    Since the one–sided limits are different, f(x)f(x) is discontinuous at 00.

Option 3:
f(x)=ln(1+tan2x)csc((e1)2)f(x)=\ln(1+\tan^2x)\cdot \csc((e^{-1})^2) (here, csc((e1)2)\csc((e^{-1})^2) is a nonzero constant because sin((e1)2)0\sin((e^{-1})^2) \neq 0).
For small xx, tanxx\tan x \approx x so ln(1+tan2x)x2\ln(1+\tan^2x) \approx x^2. Hence,

limx0f(x)csc((e1)2)x2=0.\lim_{x\to0} f(x) \approx \csc((e^{-1})^2)\cdot x^2 = 0.

Since f(0)=1f(0)=1 but the limit is 0, it is discontinuous at 00.

Option 4:
f(x)=(1+sin2x)cscx=1+sin2xsinxf(x)=(1+\sin^2x)\csc x = \frac{1+\sin^2x}{\sin x}.
As x0x\to0, the denominator sinx0\sin x \to 0 while the numerator tends to 1, so f(x)f(x) blows up (tends to \infty or -\infty).
Hence, it is discontinuous at 00.