Solveeit Logo

Question

Question: Which of the following formulas define functions equal to \({\cos ^2}2x\) wherever defined? A) \(\...

Which of the following formulas define functions equal to cos22x{\cos ^2}2x wherever defined?
A) 11tan2(2x)\dfrac{1}{{1 - {{\tan }^2}(2x)}}
B) sin2xcot2x{\sin ^2}x \cdot {\cot ^2}x
C) 12(1+cos4x)\dfrac{1}{2}(1 + \cos 4x)
D) csc2(2x)1csc2(2x)\dfrac{{{{\csc }^2}(2x) - 1}}{{{{\csc }^2}(2x)}}

Explanation

Solution

We have a trigonometric formula for the expression cos2x{\cos ^2}x. There is a relation connecting cos2x\cos 2x and cos2x{\cos ^2}x. Using that we can find one equivalent of this expression from the options. Also there is another relation connecting csc2x{\csc ^2}x and cot2x{\cot ^2}x. Using this we will get the next right option. This question has multiple right answers.

Formula used: For any angle AA we have,
1+cos2A=2cos2A1 + \cos 2A = 2{\cos ^2}A
csc2Acot2A=1{\csc ^2}A - {\cot ^2}A = 1
cot2A=cos2Asin2A{\cot ^2}A = \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}
csc2A=1sin2A{\csc ^2}A = \dfrac{1}{{{{\sin }^2}A}}

Complete step-by-step answer:
Given the expression cos22x{\cos ^2}2x.
We have to find its equivalent formula from the given options.
In Trigonometry we have,
For any angle AA, 1+cos2A=2cos2A1 + \cos 2A = 2{\cos ^2}A
So dividing both sides by 22 we have,
\Rightarrow cos2A=1+cos2A2{\cos ^2}A = \dfrac{{1 + \cos 2A}}{2}
Now put A=2xA = 2x
We have,
\Rightarrow cos22x=1+cos(2×2x)2{\cos ^2}2x = \dfrac{{1 + \cos (2 \times 2x)}}{2}
Simplifying the equation we get,
\Rightarrow cos22x=1+cos4x2=12(1+cos4x){\cos ^2}2x = \dfrac{{1 + \cos 4x}}{2} = \dfrac{1}{2}(1 + \cos 4x)
This gives option C is right.
Moving on,
We have,
csc2Acot2A=1{\csc ^2}A - {\cot ^2}A = 1
csc2A1=cot2A\Rightarrow {\csc ^2}A - 1 = {\cot ^2}A
So we can write,
\Rightarrow csc2(2x)1=cot22x{\csc ^2}(2x) - 1 = {\cot ^2}2x
\Rightarrow csc2(2x)1csc2(2x)=cot22xcsc22x\dfrac{{{{\csc }^2}(2x) - 1}}{{{{\csc }^2}(2x)}} = \dfrac{{{{\cot }^2}2x}}{{{{\csc }^2}2x}}
We know,
cot2A=cos2Asin2A{\cot ^2}A = \dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}} and csc2A=1sin2A{\csc ^2}A = \dfrac{1}{{{{\sin }^2}A}}
\Rightarrow csc2(2x)1csc2(2x)=cos22xsin22x1sin22x\dfrac{{{{\csc }^2}(2x) - 1}}{{{{\csc }^2}(2x)}} = \dfrac{{\dfrac{{{{\cos }^2}2x}}{{{{\sin }^2}2x}}}}{{\dfrac{1}{{{{\sin }^2}2x}}}}
Cancelling sin22x{\sin ^2}2x from numerator and denominator we have,
\Rightarrow csc2(2x)1csc2(2x)=cos22x\dfrac{{{{\csc }^2}(2x) - 1}}{{{{\csc }^2}(2x)}} = {\cos ^2}2x
This gives option D is right.

\therefore The answers are option C and option D.

Note: We have a similar formula for sin2A{\sin ^2}A.
For any angle AA we have,
1cos2A=2sin2A1 - \cos 2A = 2{\sin ^2}A
Also we have cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}}.
So, sin2xcot2x=sin2x×cos2xsin2x=cos2x{\sin ^2}x \cdot {\cot ^2}x = {\sin ^2}x \times \dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}} = {\cos ^2}x
But we have to find an equivalent for cos22x{\cos ^2}2x. So this cannot be the answer. If we had 2x2x instead of xx in sin2xcot2x{\sin ^2}x \cdot {\cot ^2}x, it would be the right option.
Similarly we have another equation:
1+tan2A=sec2A1 + {\tan ^2}A = {\sec ^2}A
So 11+tan2(2x)=1sec22x=cos22x\dfrac{1}{{1 + {{\tan }^2}(2x)}} = \dfrac{1}{{{{\sec }^2}2x}} = {\cos ^2}2x
So in option A, If it was given 11+tan2(2x)\dfrac{1}{{1 + {{\tan }^2}(2x)}} instead of 11tan2(2x)\dfrac{1}{{1 - {{\tan }^2}(2x)}}, this option would also be true.