Solveeit Logo

Question

Physics Question on Oscillations

Which of the following equation does not represent a SHM?

A

cosωt+sinωtcos\omega t + sin\omega t

B

sinωtcosωtsin\omega t-cos\omega t

C

1sin2ωt1 - sin2\omega t

D

sinωt+cos(ωt+α) sin\omega t+cos\left(\omega t +\alpha\right)

Answer

1sin2ωt1 - sin2\omega t

Explanation

Solution

(a) (cosωt+sinωt)\left(cos \omega\, t + sin \omega \,t\right) is a periodic function. It can also be written as =22sinωt+22=cosωt=\frac{\sqrt{2}}{\sqrt{2}}sin \,\omega t +\frac{\sqrt{2}}{\sqrt{2}}=cos\,\omega t =2(cosπ4sinωt+sinπ4cosωt)=\sqrt{2}\,\left(cos \frac{\pi}{4} sin \,\omega t +sin \frac{\pi}{4} cos \,\omega t\right) =2sin(ωt+π4)=2sin(ωt+π4+2π÷)=\sqrt{2}sin\, \left(\omega t+ \frac{\pi}{4}\right)=\sqrt{2}\,sin \left(\omega t+\frac{\pi}{4}+2\pi\div\right) =2sin[ω(t+2πω)+π4]=\sqrt{2}\,sin\left[\omega\left(t+\frac{2\pi}{\omega} \right)+\frac{\pi}{4}\right] This represent a simple harmonic function with period 2πω\frac{2\pi}{\omega} and phase π4.\frac{\pi}{4}. (b) sinωtcosωsin\omega t - cos\omega t is a periodic function. It can be written as =2[sinωtcosπ4cosωtsinπ4]=\sqrt{2}\left[sin \omega t cos \frac{\pi}{4}-cos \omega t sin \frac{\pi}{4} \right] =2sin(ωtπ4÷)=2sin[ω(t+2πω÷)π4]=\sqrt{2}sin \left(\omega t-\frac{\pi}{4}\div \right)=\sqrt{2}sin \left[\omega\left(t+\frac{2\pi}{\omega}\div\right)-\frac{\pi}{4}\right] This represent a simple harmonic function with period 2πω.\frac{2\pi}{\omega}. (c) F(t)=1sin2ωtF\left(t\right) = 1 - sin 2\omega t This is a non periodic function. (d) F(t)=sinωt+cos(ωt+α)F\left(t\right) = sin\omega t + cos\left(\omega t + \alpha\right) also represent a simple harmonic function.