Solveeit Logo

Question

Chemistry Question on Structure of atom

Which of the following does not represent the mathematical expression for the Heisenberg uncertainty principle?

A

Δx.ΔPh(4π)\Delta x . \Delta P\, \ge\, \frac{h}{\left(4\pi\right)}

B

Δx.Δvh(4πm)\Delta x . \Delta\,v \,\ge\, \frac{h}{\left(4\pi m\right)}

C

ΔE.Δth(4π)\Delta E . \Delta t \, \ge\, \frac{h}{\left(4\pi\right)}

D

ΔE.Δxh(4π)\Delta E . \Delta x \,\ge\, \frac{h}{\left(4\pi\right)}

Answer

ΔE.Δxh(4π)\Delta E . \Delta x \,\ge\, \frac{h}{\left(4\pi\right)}

Explanation

Solution

From Heisenberg uncertainty principle,
ΔxΔph4π\Delta x \cdot \Delta p \geq \frac{h}{4 \pi} ...(i)
or ΔxmΔvh4π\Delta x \cdot m \Delta v \geq \frac{h}{4 \pi}
or ΔxΔvh4πm\Delta x \cdot \Delta v \geq \frac{h}{4 \pi m} ...(ii)
This principle is also applicable for pairs like energy-time (ΔEΔt)(\Delta E \cdot \Delta t) and angular moment-angle (ΔwΔθ)(\Delta w \cdot \Delta \theta) along with position-moment (ΔxΔp)(\Delta x \cdot \Delta p).
Thus, ΔEΔth4π\Delta E \cdot \Delta t \geq \frac{h}{4 \pi} ...(iii)