Solveeit Logo

Question

Question: Which of the following differential equations are satisfied by \({\text{y = a}}{{\text{e}}^{{\text{m...

Which of the following differential equations are satisfied by y = aemx+ bemx{\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}} ?
A. dydx +  my = 0\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}{\text{ my = 0}}
B. dydx - my = 0\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ - my = 0}}
C. d2ydx2 - m2y = 0\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}
D. d2ydx2 + m2y = 0\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ + }}{{\text{m}}^2}{\text{y = 0}}

Explanation

Solution

Hint: To solve this problem we will use differentiation and differentiate the given equation so that it matches to one of the given options.

Complete step-by-step answer:
Given equation is y = aemx+ bemx{\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}} . Now, to find that the given equation satisfies which differential equation, we have to make a differential equation from the given equation and then check if it matches to the given options. To do so we will differentiate both sides of this equation with respect to x. Now, on differentiating we get
dydx = amemx - bmemx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ am}}{{\text{e}}^{{\text{mx}}}}{\text{ - bm}}{{\text{e}}^{ - {\text{mx}}}} as d(emx)dx = memx\dfrac{{{\text{d(}}{{\text{e}}^{{\text{mx}}}})}}{{{\text{dx}}}}{\text{ = m}}{{\text{e}}^{{\text{mx}}}}.
Here we have applied the chain rule to find the differentiation.
Now taking out m common from the above equation, we get
dydx = m(aemx - bemx)\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ }} = {\text{ m(a}}{{\text{e}}^{{\text{mx}}}}{\text{ - b}}{{\text{e}}^{ - {\text{mx}}}}) …….. (1)
Now, again differentiating equation (1) both sides with respect to x, we get
d2ydx2 = m(amemx + bmemx)\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ m(am}}{{\text{e}}^{{\text{mx}}}}{\text{ + bm}}{{\text{e}}^{ - {\text{mx}}}}) ……… (2)
Again, taking out m common from equation (2), we gat
d2ydx2 = m2(aemx + bemx)\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{(a}}{{\text{e}}^{{\text{mx}}}}{\text{ + b}}{{\text{e}}^{ - {\text{mx}}}}) ………. (3)
As y = aemx+ bemx{\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}} so putting value of y in the equation (3)
d2ydx2 = m2y\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ }} = {\text{ }}{{\text{m}}^2}{\text{y}}
Moving the term m2y{{\text{m}}^2}{\text{y}} to the left – hand side, we get
d2ydx2 - m2y = 0\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}}
So, y = aemx+ bemx{\text{y = a}}{{\text{e}}^{{\text{mx}}}} + {\text{ b}}{{\text{e}}^{ - {\text{mx}}}} satisfy the differential equation d2ydx2 - m2y = 0\dfrac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}}{\text{ - }}{{\text{m}}^2}{\text{y = 0}} i.e. option (C) is the correct answer.

Note: Such types of questions are very easy to solve. In such questions you can also differentiate the given equation only one time and then you can check all the given options by putting the value of differentiation to check whether the L. H. S = R. H. S, but this method is not recommended. Differentiate the given equation properly by using the property of differentiation carefully.