Solveeit Logo

Question

Statistics for Economics Question on Probability theory

Which of the following CORRECTLY defines the relationship between the variances of sample means for simple random samples drawn with and without replacement from a normal population?

A

σ2n>σ2n(NnN1)\frac{\sigma^2}{n}\gt\frac{\sigma^2}{n}(\frac{N-n}{N-1})

B

σ2nσ2n(NnN1)\frac{\sigma^2}{n}\le\frac{\sigma^2}{n}(\frac{N-n}{N-1})

C

σ2n<σ2n(NnN1)\frac{\sigma^2}{n}\lt\frac{\sigma^2}{n}(\frac{N-n}{N-1})

D

σ2n=σ2n(NnN1)\frac{\sigma^2}{n}=\frac{\sigma^2}{n}(\frac{N-n}{N-1})

Answer

σ2n>σ2n(NnN1)\frac{\sigma^2}{n}\gt\frac{\sigma^2}{n}(\frac{N-n}{N-1})

Explanation

Solution

The correct option is (A): σ2n>σ2n(NnN1)\frac{\sigma^2}{n}\gt\frac{\sigma^2}{n}(\frac{N-n}{N-1})