Solveeit Logo

Question

Question: Which of the below is the value of \(\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)d...

Which of the below is the value of 0π4log(1+tanx)dx\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx} equal to
A. π8loge2\dfrac{\pi }{8}{{\log }_{e}}2
B. π4logee\dfrac{\pi }{4}{{\log }_{e}}e
C. π4loge2\dfrac{\pi }{4}{{\log }_{e}}2
D. π8loge(12)\dfrac{\pi }{8}{{\log }_{e}}\left( \dfrac{1}{2} \right)

Explanation

Solution

To find the value of given integral we will use property of definite integral. Firstly we will use the property of definite integral to simplify our value inside the integral sign. Then we will use the tangent function formula to expand the term inside. Finally we will use logarithm property and solve the obtained value and get the desired answer.

Complete step by step answer:
We have to find the value of:
I=0π4log(1+tanx)dxI=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}……(1)\left( 1 \right)
Using the below definite integral property:
0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx=\int\limits_{0}^{a}{f\left( a-x \right)dx}}
Using above property in (1) we get,
I=0π4log(1+tan(π4x))dxI=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan \left( \dfrac{\pi }{4}-x \right) \right)dx}……(2)\left( 2 \right)
We know tangent formula given as:
tan(π4x)=1tanx1+tanx\tan \left( \dfrac{\pi }{4}-x \right)=\dfrac{1-\tan x}{1+\tan x}
Using it in equation (2) we get,
I=0π4log(1+1tanx1+tanx)dx I=0π4log(1+tanx+1tanx1+tanx)dx I=0π4log(11+tanx)dx \begin{aligned} & I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\dfrac{1-\tan x}{1+\tan x} \right)dx} \\\ & I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( \dfrac{1+\tan x+1-\tan x}{1+\tan x} \right)dx} \\\ & I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( \dfrac{1}{1+\tan x} \right)dx} \\\ \end{aligned}
Now we will use logarithm property above which states that:
log(ab)=logalogb\log \left( \dfrac{a}{b} \right)=\log a-\log b
I=0π4log2dx0π4log(1+tanx)dxI=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx-\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}}
We can replace second term from equation (1) and get,
I=0π4log2dxI I+I=0π4log2dx 2I=log20π41dx 2I=log2(x)0π4 \begin{aligned} & I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx-I} \\\ & I+I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx} \\\ & 2I=\log 2\int\limits_{0}^{\dfrac{\pi }{4}}{1dx} \\\ & 2I=\log 2\left( x \right)_{0}^{\dfrac{\pi }{4}} \\\ \end{aligned}
On simplifying further we get,
I=12log2(π40)I=\dfrac{1}{2}\log 2\left( \dfrac{\pi }{4}-0 \right)
I=loge22×π4 I=π8loge2 \begin{aligned} & I=\dfrac{{{\log }_{e}}2}{2}\times \dfrac{\pi }{4} \\\ & I=\dfrac{\pi }{8}{{\log }_{e}}2 \\\ \end{aligned}
Put value of II from equation (1) we get,
0π4log(1+tanx)dx=π8loge2\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}=\dfrac{\pi }{8}{{\log }_{e}}2

So, the correct answer is “Option A”.

Note: An integral assigns numbers to functions to describe the displacement, area, volume and other concepts. The process of finding the integrals is known as Integration. Integrals are of two types: indefinite and definite integral where indefinite integral doesn’t have any limit to which the integral is to be calculated whereas in definite integral the limit or summation is defined. Logarithm is an inverse function to exponential which means logarithm of any number xx is the exponent to which another fixed number bb is to be raised. Trigonometry is a branch of science which deals with the side lengths and angles of triangles. There are six trigonometric functions which are sine, cosine, tangent, cosecant, secant and cotangent.