Solveeit Logo

Question

Question: Which of the below is the trigonometric function \(\sec \theta \) equal to? a) \(\dfrac{1}{\sqrt{...

Which of the below is the trigonometric function secθ\sec \theta equal to?
a) 11cos2θ\dfrac{1}{\sqrt{1-{{\cos }^{2}}\theta }}
b) 1cot2θcotθ\dfrac{\sqrt{1-{{\cot }^{2}}\theta }}{\cot \theta }
c) cotθ1cot2θ\dfrac{\cot \theta }{\sqrt{1-{{\cot }^{2}}\theta }}
d) cosec2θ1cosecθ\dfrac{\sqrt{\text{cose}{{\text{c}}^{2}}\theta -1}}{\text{cosec}\theta }

Explanation

Solution

Since we have secθ\sec \theta , we need to find which of the options is equal to secθ\sec \theta . Since we know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }, so we need to find which among the options equals to 1cosθ\dfrac{1}{\cos \theta }. Therefore, convert all the given options into sine and cosine and find the simplest form and compare with the value given in the question.

Complete step by step answer:
a) 11cos2θ\dfrac{1}{\sqrt{1-{{\cos }^{2}}\theta }}
We have: LHS=11cos2θ......(1)LHS=\dfrac{1}{\sqrt{1-{{\cos }^{2}}\theta }}......(1)
Since we know that: cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
So, we can write equation (1) as:
LHS=1sin2θ =1sinθ......(2)\begin{aligned} & LHS=\dfrac{1}{\sqrt{{{\sin }^{2}}\theta }} \\\ & =\dfrac{1}{\sin \theta }......(2) \end{aligned}
As we know that 1sinθ=cosecθ\dfrac{1}{\sin \theta }=\text{cosec}\theta
So, we have:
LHS=cosecθLHS=\text{cosec}\theta
Therefore, LHSRHSLHS\ne RHS
Hence option (a) is incorrect.

b) 1cot2θcotθ\dfrac{\sqrt{1-{{\cot }^{2}}\theta }}{\cot \theta }
We have: LHS=1cot2θcotθ......(1)LHS=\dfrac{\sqrt{1-{{\cot }^{2}}\theta }}{\cot \theta }......(1)
Since we know that: cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }
So, we can write equation (1) as:

& LHS=\dfrac{\sqrt{1-{{\left( \dfrac{\cos \theta }{\sin \theta } \right)}^{2}}}}{\left( \dfrac{\cos \theta }{\sin \theta } \right)} \\\ & =\dfrac{\sqrt{1-{{\cos }^{2}}\theta }}{\cos \theta }......(2) \end{aligned}$$ Since we know that: ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ So, we can write equation (2) as: $\begin{aligned} & LHS=\dfrac{\sqrt{{{\sin }^{2}}\theta }}{\cos \theta } \\\ & =\dfrac{\sin \theta }{\cos \theta }......(3) \end{aligned}$ As we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $ So, we have: $LHS=\tan \theta $ Therefore, $LHS\ne RHS$ Hence option (b) is incorrect. c) $\dfrac{\cot \theta }{\sqrt{1-{{\cot }^{2}}\theta }}$ We have: $LHS=\dfrac{\cot \theta }{\sqrt{1-{{\cot }^{2}}\theta }}......(1)$ Since we know that: $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ So, we can write equation (1) as: $$\begin{aligned} & LHS=\dfrac{\left( \dfrac{\cos \theta }{\sin \theta } \right)}{\sqrt{1-{{\left( \dfrac{\cos \theta }{\sin \theta } \right)}^{2}}}} \\\ & =\dfrac{\cos \theta }{\sqrt{1-{{\cos }^{2}}\theta }}......(2) \end{aligned}$$ Since we know that: ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$ So, we can write equation (2) as: $\begin{aligned} & LHS=\dfrac{\cos \theta }{\sqrt{{{\sin }^{2}}\theta }} \\\ & =\dfrac{\cos \theta }{\sin \theta }......(3) \end{aligned}$ As we know that $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ So, we have: $LHS=\cot \theta $ Therefore, $LHS\ne RHS$ Hence option (c) is incorrect. d) $$\dfrac{\sqrt{\text{cose}{{\text{c}}^{2}}\theta -1}}{\text{cosec}\theta }$$ We have: $LHS=\dfrac{\sqrt{\text{cose}{{\text{c}}^{2}}\theta -1}}{\text{cosec}\theta }......(1)$ Since we know that: $\text{cose}{{\text{c}}^{2}}\theta =1+{{\cot }^{2}}\theta $ So, we can write equation (1) as: $\begin{aligned} & LHS=\dfrac{\sqrt{\text{co}{{\text{t}}^{2}}\theta }}{\text{cosec}\theta } \\\ & =\dfrac{\text{cot}\theta }{\text{cosec}\theta }......(2) \end{aligned}$ As we know that $\dfrac{1}{\sin \theta }=\text{cosec}\theta $ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ So, we have: $\begin{aligned} & LHS=\dfrac{\dfrac{\text{cos}\theta }{\sin \theta }}{\dfrac{1}{\sin \theta }} \\\ & =\text{cos}\theta \end{aligned}$ Therefore, $LHS\ne RHS$ **Hence option (d) is incorrect.** **Note:** Always remember that whenever we are given a trigonometric function to solve, try to simplify the expression in terms of sine and cosine of the given angles. It makes the solution simpler and hence apply sine and cosine relations to solve the question.