Solveeit Logo

Question

Question: Which of the below gives the value of \(\int\limits_ {\dfrac {\pi} {{12}}} ^ {\dfrac {\pi}{4}} {\dfr...

Which of the below gives the value of π12π48cos2x(tanx+cotx)3dx\int\limits_ {\dfrac {\pi} {{12}}} ^ {\dfrac {\pi}{4}} {\dfrac {{8\cos 2x}} {{{{(\tan x + \cot x)} ^3}}}} dx:
A 15128\dfrac {{15}} {{128}}
B 1564\dfrac {{15}} {{64}}
C 1332\dfrac {{13}} {{32}}
D 13256\dfrac {{13}} {{256}}

Explanation

Solution

In this question we have been given a trigonometric equation π12π48cos2x(tanx+cotx)3dx\int\limits_ {\dfrac {\pi} {{12}}} ^ {\dfrac {\pi}{4}} {\dfrac {{8\cos 2x}} {{{{(\tan x + \cot x)} ^3}}}} dx we need to find its value. For that firstly we will change the tan and cot function into cosine and sin, after that we will be using the identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 for simplifying the equation. After that we will be using the formula: 2cos2x1=cos2x2{\cos ^2}x - 1 = \cos 2x and then integrate using the substitution method, put the limits and solve the equation accordingly.

Complete step by step answer:
We want to find integration of a trigonometric expression. Consider π12π48cos2x(tanx+cotx)3dx\int\limits_{\dfrac{\pi }{12}}^{\dfrac{\pi }{4}}{\dfrac{8\cos 2x}{{{(\tan x+\cot x)}^{3}}}}dx,
For solving this equation in the first step we will change cot function and tan functions, as we know tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}.
Now the equation would become π12π48cos2x(sinxcosx+cosxsinx)3dx\int\limits_{\dfrac{\pi }{12}}^{\dfrac{\pi }{4}}{\dfrac{8\cos 2x}{{{\left( \dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\sin x} \right)}^{3}}}}dx ,
Now we will be taking the LCM and the equation would be π12π48cos2x(sin2x+cos2xsinxcosx)3dx\int\limits_{\dfrac{\pi }{12}}^{\dfrac{\pi }{4}}{\dfrac{8\cos 2x}{{{\left( \dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x\cos x} \right)}^{3}}}}dx,

Now we will be using the identity: sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1,
So, the equation would become, π12π48cos2x(1sinxcosx)3dx\int\limits_{\dfrac{\pi }{12}}^{\dfrac{\pi }{4}}{\dfrac{8\cos 2x}{{{\left( \dfrac{1}{\sin x\cos x} \right)}^{3}}}}dx,
Now we will take sin x and cos x in numerator to solve it further,
The equation would become, π12π48cos2xsin3xcos3xdx\int\limits_{\dfrac{\pi }{12}}^{\dfrac{\pi }{4}}{8\cos 2x{{\sin }^{3}}x{{\cos }^{3}}x}dx,
We can write this expression as π12π4cos2x(2sinxcosx)3dx\int\limits_{\dfrac{\pi }{12}}^{\dfrac{\pi }{4}}{\cos 2x{{\left( 2\sin x\cos x \right)}^{3}}}dx
Now we know that sin2x=2sinxcosx\sin 2x=2\sin x\cos x .
Hence we get the expression as π12π4cos2x(sin2x)3dx\int\limits_{\dfrac{\pi }{12}}^{\dfrac{\pi }{4}}{\cos 2x{{\left( \sin 2x \right)}^{3}}}dx
Now let us substitute sin2x=t\sin 2x=t Differentiating on both sides we get 2cos2xdx=dt2\cos 2xdx=dt
Hence we have when sin2x=t\sin 2x=t cos2xdx=dt2\cos 2xdx=\dfrac{dt}{2}
Also when x=π4,2x=π2x=\dfrac{\pi }{4},2x=\dfrac{\pi }{2} and hence t=sin2x=1t=\sin 2x=1
And when x=π12,2x=π6x=\dfrac{\pi }{12},2x=\dfrac{\pi }{6} and hence t=sin2x=sinπ6=12t=\sin 2x=\sin \dfrac{\pi }{6}=\dfrac{1}{2}
Now substituting the values and changing the limits we get
12112(t)3dt\int\limits_{\dfrac{1}{2}}^{1}{\dfrac{1}{2}{{\left( t \right)}^{3}}}dt
Now we know that xn=xn+1n+1+C\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+C hence we get.

& \int\limits_{\dfrac{1}{2}}^{1}{\dfrac{1}{2}{{\left( t \right)}^{3}}}dt=\dfrac{1}{2}\left[ \dfrac{{{t}^{4}}}{4} \right]_{\dfrac{1}{2}}^{1} \\\ & \int\limits_{\dfrac{1}{2}}^{1}{\dfrac{1}{2}{{\left( t \right)}^{3}}}dt=\dfrac{1}{2}\left[ \dfrac{{{1}^{4}}}{4}-{{\left( \dfrac{1}{2} \right)}^{4}}\times \dfrac{1}{4} \right] \\\ & \int\limits_{\dfrac{1}{2}}^{1}{\dfrac{1}{2}{{\left( t \right)}^{3}}}dt=\dfrac{1}{2}\left[ \dfrac{1}{4}-\dfrac{1}{64} \right] \\\ \end{aligned}$$ Now taking LCM we get $$\begin{aligned} & =\dfrac{1}{2}\left[ \dfrac{16-1}{64} \right] \\\ & =\dfrac{1}{2}\left[ \dfrac{15}{64} \right] \\\ & =\dfrac{15}{128} \\\ \end{aligned}$$ Hence we have The value of given Integral is $\dfrac{15}{128}$ **So, the correct answer is “Option A”.** **Note:** In this question a lot of formulas have been used, so keep all the formulas accordingly. While putting limits be careful as chances of mistakes are a lot over there. In the first step, students might expand ${\left( {\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}} \right)^3}$using the formula ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab(a + b)$, but avoid doing that as it will increase the calculations and chances of mistakes too. Also, if you are integrating by substitution method do change the limits accordingly.