Solveeit Logo

Question

Question: Which is larger \[{\left( {1.01} \right)^{1000000}}\]or 10,000? Find the \(17^{th}\) and \(18^{th}\)...

Which is larger (1.01)1000000{\left( {1.01} \right)^{1000000}}or 10,000? Find the 17th17^{th} and 18th18^{th} terms in the expansion(2+a)50{\left( {2 + a} \right)^{50}}are equal.

Explanation

Solution

To solve this question we must have the idea about the Binomial expansion of(1+x)n{\left( {1 + x} \right)^n}. First we have to express 1.01 as the sum of 1 and 0.01. Then we have to expand (1.01)1000000{\left( {1.01} \right)^{1000000}} using the Binomial theorem to evaluate it. Then the obtained must be compared to 10,000 and determine which is larger.

Complete step by step answer:
We know that an algebraic expression containing two terms is called a binomial expression. The Binomial theorem states that
“For any positive integer n, the nth power of the sum of two numbers y and x may be expressed as the sum of n+1n+1 terms of the form which are given by
(y+x)n=r=0nnCrynrxr{{\left( y+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{y}^{n-r}}{{x}^{r}}}
Or, (y+x)n=nC0yn+nC1yn1x+nC2yn2x2+.............+nCn1yxn1+nCnxn{{\left( y+x \right)}^{n}}={}^{n}{{C}_{0}}{{y}^{n}}+{}^{n}{{C}_{1}}{{y}^{n-1}}x+{}^{n}{{C}_{2}}{{y}^{n-2}}{{x}^{2}}+.............+{}^{n}{{C}_{n-1}}y{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}….. (1)
Where,
nCr=n!(nr)!r!{}^{n}{{C}_{r}}=\dfrac{n!}{(n-r)!r!}………………… (2)
Now for the expansion of substitutingy=1y=1in eq. (1) we will get
(1+x)n=nC01n+nC11n1x+nC21n2x2+..........+xn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{1}^{n}}+{}^{n}{{C}_{1}}{{1}^{n-1}}x+{}^{n}{{C}_{2}}{{1}^{n-2}}{{x}^{2}}+..........+{{x}^{n}}
(1+x)n=1+nx+n(n1)2!x2+...........+xn{{(1+x)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+...........+{{x}^{n}}………………….. (3)
We have to find out(1.01)1000000{{\left( 1.01 \right)}^{1000000}}. Let’s express 1.01 as(1+0.01)\left( 1+0.01 \right). Now considering the expression (1+0.01)1000000{{\left( 1+0.01 \right)}^{1000000}}as (1+x)n{{\left( 1+x \right)}^{n}}let’s substitute x=0.01x=0.01and n=1000000n=1000000in the eq. (3) we will get
(1+0.01)1000000=1+1000000×0.01+..........{{\left( 1+0.01 \right)}^{1000000}}=1+1000000\times 0.01+..........
Or, (1+0.01)1000000=10,001+.........{{\left( 1+0.01 \right)}^{1000000}}=10,001+.........
Here we see that in the expansion 10,001 is added to the positive terms. So the value to be obtained will be greater than 10,000.
Therefore (1.01)1000000{{\left( 1.01 \right)}^{1000000}}is larger than 10,000.
Now substituting b=2b=2andn=50n=50in eq. (1) we will get the expansion for (2+a)50{{\left( 2+a \right)}^{50}}which is given by,
(2+a)50=r=05050Cr250rar{{\left( 2+a \right)}^{50}}=\sum\limits_{r=0}^{50}{{}^{50}{{C}_{r}}{{2}^{50-r}}{{a}^{r}}}
(2+a)50=50C0250+50C12501a1+nC22502a2+.............+50C5012a501+50C50b50{{\left( 2+a \right)}^{50}}={}^{50}{{C}_{0}}{{2}^{50}}+{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}+.............+{}^{50}{{C}_{50-1}}2{{a}^{50-1}}+{}^{50}{{C}_{50}}{{b}^{50}}……………. (4)
From the Binomial theorem we see that the Binomial expansion of (2+a)50{{\left( 2+a \right)}^{50}}contains 50+1=5150+1=51terms. From eq. (4), we get that
The 1st1^{st} term of (2+a)50{{\left( 2+a \right)}^{50}}is 50C0250=50C11250(11)a11{}^{50}{{C}_{0}}{{2}^{50}}={}^{50}{{C}_{1-1}}{{2}^{50-(1-1)}}{{a}^{1-1}}
The 2nd2^{nd} term of (2+a)50{{\left( 2+a \right)}^{50}}is 50C12501a1=50C21250(21)a21{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}={}^{50}{{C}_{2-1}}{{2}^{50-(2-1)}}{{a}^{2-1}}
The 3rd3^{rd} term is 50C22502a2=50C31250(31)a31{}^{50}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}={}^{50}{{C}_{3-1}}{{2}^{50-(3-1)}}{{a}^{3-1}}
And so on
Similarly rth{{r}^{th}} term is given by 50Cr1250(r1)ar1{}^{50}{{C}_{r-1}}{{2}^{50-(r-1)}}{{a}^{r-1}}
Now we will find the 17th and 18th{{17}^{th}}\text{ and }{{18}^{th}} term in the expansion (2+a)50{{\left( 2+a \right)}^{50}}which is given by
T17=50C171250(171)a171=50C16234a16{{T}_{17}}={}^{50}{{C}_{17-1}}{{2}^{50-(17-1)}}{{a}^{17-1}}={}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}………………………………… (5)
And T18=50C181250(181)a181=50C17233a17{{T}_{18}}={}^{50}{{C}_{18-1}}{{2}^{50-(18-1)}}{{a}^{18-1}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}} ………………………………. (6)
But given that in the expansion of(2+a)50{{\left( 2+a \right)}^{50}}, the 17th and 17th and 18th{{17}^{th}}\text{ and }{{18}^{th}} term are equal, therefore we get

& \Rightarrow {}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}} \\\ & \Rightarrow \dfrac{{{a}^{17}}}{{{a}^{16}}}=\dfrac{{}^{50}{{C}_{16}}{{2}^{34}}}{{}^{50}{{C}_{17}}{{2}^{33}}} \end{aligned}$$ $$\Rightarrow a=2\times \dfrac{\dfrac{50!}{(50-16)!16!}}{\dfrac{50!}{(50-17)!17!}}$$ $$\Rightarrow a=2\times \dfrac{\left( 33! \right)\left( 17! \right)}{\left( 34! \right)\left( 16! \right)}$$ Or, $$\Rightarrow a=2\times \dfrac{\left( 33! \right)\times 17\times \left( 16! \right)}{34\times \left( 33! \right)\left( 16! \right)}$$ On simplifying, we get $$\Rightarrow a=2\times \dfrac{17}{34}$$ On solving, we get $$\Rightarrow a=1$$ **Here we got the value of $$a=1$$.** **Note:** Factorial of a number n that is $$n!$$ defined only for any nonnegative integer n. The factorial of number n can be expressed as $$n!=n\left( n-1 \right)\left( n-2 \right)\times ........\times 3\times 2\times 1$$ or $$n!=n\left( n-1 \right)!$$. Try not to make any calculation mistakes.