Solveeit Logo

Question

Question: Which has the minimum number of oxygen atoms? A.10mL \[{{\text{H}}_2}{\text{O}}\left( {\text{l}} \...

Which has the minimum number of oxygen atoms?
A.10mL H2O(l)[density of water=1g mL1]{{\text{H}}_2}{\text{O}}\left( {\text{l}} \right)\left[ {{\text{density of water}} = 1{\text{g m}}{{\text{L}}^{ - 1}}} \right]
B.0.1mol V2O50.1{\text{mol }}{{\text{V}}_2}{{\text{O}}_5}
C.12O3(g)12{\text{g }}{{\text{O}}_3}\left( {\text{g}} \right)
D.12.044×1023molecules of CO212.044 \times {10^{23}}{\text{molecules of C}}{{\text{O}}_2}

Explanation

Solution

First calculate the number of moles of the given substance, then as we known one mole of any substance contains NA{{\text{N}}_{\text{A}}} entity of that substance; however atoms of different elements can be determine using atomicity.

Formula: The mole is a concept of quantity in terms of number, mass and volume. It can be mathematical represented as:
mole=given massmol.wt./At.wt.{\text{mole}} = \dfrac{{{\text{given mass}}}}{{{\text{mol}}.{\text{wt}}./{\text{At}}.{\text{wt}}.}} , mole=number of particle given6.022×1023{\text{mole}} = \dfrac{{{\text{number of particle given}}}}{{6.022 \times {{10}^{23}}}} , mole=volume at NTP(in Litre)22.4L{\text{mole}} = \dfrac{{{\text{volume at NTP}}\left( {{\text{in Litre}}} \right)}}{{22.4{\text{L}}}} .

Complete step-by-step answer: Now in case of 10mL H2O(l)[density of water=1g mL1]{{\text{H}}_2}{\text{O}}\left( {\text{l}} \right)\left[ {{\text{density of water}} = 1{\text{g m}}{{\text{L}}^{ - 1}}} \right] , mass of water can be given by: mass=volume×density=10mL×1g mL1=10g{\text{mass}} = {\text{volume}} \times {\text{density}} = 10{\text{mL}} \times 1{\text{g m}}{{\text{L}}^{ - 1}} = 10{\text{g}} .
Therefore number of mole in 10g of water can be given as:
mole=1018=0.55mol{\text{mole}} = \dfrac{{10}}{{18}} = 0.55{\text{mol}} .
Therefore number of oxygen atom of water in 0.55mol0.55{\text{mol}} can be given by: number of oxygen atom=mole×NA×atomicity of oxygen{\text{number of oxygen atom}} = {\text{mole}} \times {{\text{N}}_{\text{A}}} \times {\text{atomicity of oxygen}} .
We get number of oxygen atom=0.55×(6.022×1023)×1=3.35×1023atom{\text{number of oxygen atom}} = 0.55 \times \left( {6.022 \times {{10}^{23}}} \right) \times 1 = 3.35 \times {10^{23}}{\text{atom}} .
Similarly in case of 0.1mol V2O50.1{\text{mol }}{{\text{V}}_2}{{\text{O}}_5} , we get number of oxygen atom: number of oxygen atom=0.1×(6.022×1023)×5=3×1023atom{\text{number of oxygen atom}} = 0.1 \times \left( {6.022 \times {{10}^{23}}} \right) \times 5 = 3 \times {10^{23}}{\text{atom}} , by using the equation: number of oxygen atom=mole×NA×atomicity of oxygen{\text{number of oxygen atom}} = {\text{mole}} \times {{\text{N}}_{\text{A}}} \times {\text{atomicity of oxygen}} .
In case of 12O3(g)12{\text{g }}{{\text{O}}_3}\left( {\text{g}} \right) , moles of ozone can be given as: mole=1248=0.25mol{\text{mole}} = \dfrac{{12}}{{48}} = 0.25{\text{mol}} . Therefore, number of oxygen atom in 0.25mol0.25{\text{mol}} of ozone can be given by: number of oxygen atom=0.25×(6.022×1023)×3=4.5×1023atom{\text{number of oxygen atom}} = 0.25 \times \left( {6.022 \times {{10}^{23}}} \right) \times 3 = 4.5 \times {10^{23}}{\text{atom}} , by using the equation: number of oxygen atom=mole×NA×atomicity of oxygen{\text{number of oxygen atom}} = {\text{mole}} \times {{\text{N}}_{\text{A}}} \times {\text{atomicity of oxygen}} .
In case of 12.044×1023molecules of CO212.044 \times {10^{23}}{\text{molecules of C}}{{\text{O}}_2} , moles of carbon dioxide can be given as: mole=12.044×10226.022×1023=2mol{\text{mole}} = \dfrac{{12.044 \times {{10}^{22}}}}{{6.022 \times {{10}^{23}}}} = 2{\text{mol}} .
Therefore, number of oxygen atom in 2mol2{\text{mol}} of carbon dioxide can be given by:
number of oxygen atom=2×(6.022×1023)×2=24.088×1023atom{\text{number of oxygen atom}} = 2 \times \left( {6.022 \times {{10}^{23}}} \right) \times 2 = 24.088 \times {10^{23}}{\text{atom}} , by using equation: number of oxygen atom=mole×NA×atomicity of oxygen{\text{number of oxygen atom}} = {\text{mole}} \times {{\text{N}}_{\text{A}}} \times {\text{atomicity of oxygen}} .
Thus, a minimum number of oxygen atoms are present in 0.1mol V2O50.1{\text{mol }}{{\text{V}}_2}{{\text{O}}_5} .

Therefore, the correct option is B.

Note: A mole is the SI unit for the amount of substance. It is define as the amount of substance that contains as many entities as there are atoms in exactly 12g of C12{{\text{C}}^{12}} isotope. 1 mole is equivalent to NA{{\text{N}}_{\text{A}}} atoms, molecules, ions, electron or any entity. 1 mole is equivalent to molecular weight or atomic weight of substance. 1 mole is equivalent to the volume of 22.4L22.4{\text{L}} of a gas occupied at NTP.