Solveeit Logo

Question

Question: Which among the following does not represent Maxwell’s equation?...

Which among the following does not represent Maxwell’s equation?

A

E.dA=qε0\oint_{}^{}{\overrightarrow{E}.\overset{\rightarrow}{dA} = \frac{q}{\varepsilon_{0}}}

B

B.dA=0\oint_{}^{}{\overrightarrow{B}.d\overrightarrow{A} = 0}

C

E.dl=dBdt\oint_{}^{}{\overrightarrow{E}.d\overrightarrow{l} = \frac{- dB}{dt}}

D

B.dl=μ0IC+μ0ε0dφEdt\oint_{}^{}{\overrightarrow{B}.d\overrightarrow{l} = \mu_{0}I_{C} + \mu_{0}\varepsilon_{0}\frac{d\varphi_{E}}{dt}}

Answer

E.dl=dBdt\oint_{}^{}{\overrightarrow{E}.d\overrightarrow{l} = \frac{- dB}{dt}}

Explanation

Solution

: Maxwell’s equations are as follows

(i) E.dA=qε0\oint_{}^{}{\overrightarrow{E}.\overset{\overset{\quad\quad}{\rightarrow}}{dA} = \frac{q}{\varepsilon_{0}}} (Gauss’s law of electricity)

(ii) EdA=0\oint \overrightarrow { \mathrm { E } } \cdot \overrightarrow { \mathrm { dA } } = 0 (Gauss’s law of magnetism)

(iii) E.dA=dφdt\oint_{}^{}{\overrightarrow{E}.\overset{\overset{\quad\quad}{\rightarrow}}{dA} = \frac{d\varphi}{dt}} (Faraday’s law)

(iv) B.dt=μ0ε0dφEdt\oint_{}^{}{\overrightarrow{B}.\overset{\overset{\quad\quad}{\rightarrow}}{dt} = \mu_{0}\varepsilon_{0}\frac{d\varphi_{E}}{dt}} (Ampere – Maxwell law)