Solveeit Logo

Question

Mathematics Question on Differential equations

When y=vxy = vx , yy and xx are variables, the differential equation dydx=2xyx2y2\frac{dy}{dx}=\frac{2xy}{x^{2}-y^{2}} reduces to

A

1v2v+v3dv=2xdx\frac{1-v^{2}}{v+v^{3}}dv=\frac{2}{x}dx

B

1v2v+v3dv=1xdx\frac{1-v^{2}}{v+v^{3}}dv=\frac{1}{x}dx

C

1+v2v+v3dv=1xdx\frac{1+v^{2}}{v+v^{3}}dv=\frac{1}{x}dx

D

1v3v+v3dv=1xdx\frac{1-v^{3}}{v+v^{3}}dv=\frac{1}{x}dx

Answer

1v2v+v3dv=1xdx\frac{1-v^{2}}{v+v^{3}}dv=\frac{1}{x}dx

Explanation

Solution

We have, dydx=2xyx2y2...(i)\frac{dy}{dx} = \frac{2xy}{x^2 - y^2}\,\,\,...(i)
Put y=vxy = vx
dydx=v+xdvdx\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}
\therefore Equation (i)(i) becomes,
v+xdvdx=2x2vx2v2x2v + x \frac{dv}{dx} = \frac{2x^2v}{x^2 - v^2 x^2}
xdvdx=v+v31v2\Rightarrow x \frac{dv}{dx} = \frac{v + v^3}{1-v^2}
(1v2v+v3)dv=dxx\Rightarrow \left(\frac{1-v^{2}}{v + v^{3}}\right) dv = \frac{dx}{x}