Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

When x = d3\frac{d}{3} then capacitance is C1 = 2 μF then if x = 2d3\frac{2d}{3} then capacitance C2 will be (in μF).

Answer

1Ceq=1Cair+1Cdi\frac{1}{C_{eq}}=\frac{1}{C_{air}}+\frac{1}{C_{di}}
1Ceq=2d3(ϵ0A)+d(3)4ϵ0A=3d4Aϵ0\frac{1}{C_{eq}}=\frac{2d}{3(\epsilon _{0}A)}+\frac{d}{(3)4\epsilon _{0}A}=\frac{3d}{4A\epsilon _{0}}
Ceq=4Aϵ03d=2μFC_{eq}=\frac{4A\epsilon _{0}}{3d}=2\mu F
Aϵ0d=1.5μF\frac{A\epsilon _{0}}{d}=1.5\mu F
1Ceq=d3(ϵ0A)+2d(3)4ϵ0A\frac{1}{C'_{eq}}=\frac{d}{3(\epsilon _{0}A)}+\frac{2d}{(3)4\epsilon _{0}A}= \frac{(4+2)d}{12\epsilon _{0}{A}}$$=\frac{6d}{12\epsilon _{0}{A}}$$\Rightarrow C'_{eq}=2[\frac{\epsilon _{0}A}{d}]=3\mu F

So, the correct answer is 3 μF